Abstract

An investigation into the cracking behavior of advanced environmental barrier coating/woven SiC/SiC ceramic matrix composite (CMC) system under uni-axial tension testing was performed in this study. The effect of substrate (CMC) condition on the coating behavior was also studied. Acoustic emission (AE) and digital image correlation (DIC) were implemented as health monitoring techniques to gain detailed insights into the fracture process of the coating and to identify the origin and location of the fracture events. Fluorescent penetrant inspection was used in situ in some cases to help identify cracks. Post-test microscopy was performed to correlate the results with DIC and AE. It was evident that for the as-produced woven substrate, the EBC coating cracked prior to substrate cracking; however, for the altered surface substrate, the CMC substrate formed matrix cracks prior to the EBC coating.

References

1.
Steibel
,
J.
,
2019
, “
Ceramic Matrix Composites Taking Flight at GE Aviation
,”
Am. Ceram. Soc. Bull.
,
98
(
3
), pp.
113
134
.https://ceramics.org/wpcontent/uploads/2019/03/April-2019_Feature.pdf
2.
Spitsberg
,
I.
, and
Steibel
,
J.
,
2004
, “
Thermal and Environmental Barrier Coatings for SiC/SiC CMCs in Aircraft Engine Applications*
,”
Int. J. Appl. Ceram. Technol.
,
1
(
4
), pp.
291
301
.10.1111/j.1744-7402.2004.tb00181.x
3.
Lynam
,
A.
,
Rincon Romero
,
A.
,
Xu
,
F.
,
Brewster
,
G. J.
,
Pattinson
,
G.
, and
Hussain
,
T.
,
2023
, “
Atmospheric Plasma Spraying of Ytterbium Disilicate for Abradable and Environmental Barrier Coatings: A Story of Processing-Microstructure Relationships
,”
Ceram. Int.
,
49
(
13
), pp.
22232
22243
.10.1016/j.ceramint.2023.04.053
4.
Chen
,
D.
,
2024
, “
TGO Growth Behavior in Environmental Barrier Coatings With Modified Silicon Bond Coat
,”
J. Therm. Spray Tech.
,
33
(
1
), pp.
174
180
.10.1007/s11666-023-01688-x
5.
Jacobson
,
N. S.
,
1993
, “
Corrosion of Silicon-Based Ceramics in Combustion Environments
,”
J. Am. Ceram. Soc.
,
76
(
1
), pp.
3
28
.10.1111/j.1151-2916.1993.tb03684.x
6.
Opila
,
E. J.
,
Smialek
,
J. L.
,
Robinson
,
R. C.
,
Fox
,
D. S.
, and
Jacobson
,
N. S.
,
1999
, “
SiC Recession Caused by SiO2 Scale Volatility Under Combustion Conditions: II, Thermodynamics and Gaseous-Diffusion Model
,”
J. Am. Ceram. Soc.
,
82
(
7
), pp.
1826
1834
.10.1111/j.1151-2916.1999.tb02005.x
7.
Panakarajupally
,
R. P.
,
El Rassi
,
J.
,
Manigandan
,
K.
, and
Morscher
,
G. N.
,
2020
, “
Fatigue Characterization of SiC/SiC Ceramic Matrix Composites in Combustion Environment
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121004
.10.1115/1.4048460
8.
Lee
,
K. N.
,
Eldridge
,
J. I.
, and
Robinson
,
R. C.
,
2005
, “
Residual Stresses and Their Effects on the Durability of Environmental Barrier Coatings for SiC Ceramics
,”
J. Am. Ceram. Soc.
,
88
(
12
), pp.
3483
3488
.10.1111/j.1551-2916.2005.00640.x
9.
Lee
,
K. N.
,
2019
, “
Yb2Si2O7 Environmental Barrier Coatings With Reduced Bond Coat Oxidation Rates Via Chemical Modifications for Long Life
,”
J. Am. Ceram. Soc.
,
102
(
3
), pp.
1507
1521
.10.1111/jace.15978
10.
Kane
,
K.
,
Garcia
,
E.
,
Lance
,
M.
,
Parker
,
C.
,
Sampath
,
S.
, and
Pint
,
B.
,
2022
, “
Accelerated Oxidation During 1350 °C Cycling of Ytterbium Silicate Environmental Barrier Coatings
,”
J Am. Ceram. Soc.
,
105
(
4
), pp.
2754
2763
.10.1111/jace.18231
11.
Lee
,
K. N.
,
2014
, “
Environmental Barrier Coatings for SiCf/SiC
,”
Ceramic Matrix Composites
,
Wiley Ltd.
, Hoboken, NJ, pp.
430
451
.
12.
Kane
,
K.
,
Garcia
,
E.
,
Stack
,
P.
,
Lance
,
M.
,
Parker
,
C.
,
Sampath
,
S.
, and
Pint
,
B. A.
,
2022
, “
Evaluating Steam Oxidation Kinetics of Environmental Barrier Coatings
,”
J. Am. Ceram. Soc.
,
105
(
1
), pp.
590
605
.10.1111/jace.18093
13.
Deijkers
,
J. A.
,
Begley
,
M. R.
, and
Wadley
,
H. N. G.
,
2022
, “
Failure Mechanisms in Model Thermal and Environmental Barrier Coating Systems
,”
J. Eur. Ceram. Soc.
,
42
(
12
), pp.
5129
5144
.10.1016/j.jeurceramsoc.2022.04.046
14.
Lee
,
K. N.
,
Zhu
,
D.
, and
Lima
,
R. S.
,
2021
, “
Perspectives on Environmental Barrier Coatings (EBCs) Manufactured Via Air Plasma Spray (APS) on Ceramic Matrix Composites (CMCs): A Tutorial Paper
,”
J. Therm. Spray Tech.
,
30
(
1–2
), pp.
40
58
.10.1007/s11666-021-01168-0
15.
Lee
,
K. N.
,
Fox
,
D. S.
, and
Bansal
,
N. P.
,
2005
, “
Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics
,”
J. Eur. Ceram. Soc.
,
25
(
10
), pp.
1705
1715
.10.1016/j.jeurceramsoc.2004.12.013
16.
Richards
,
B. T.
,
Young
,
K. A.
,
De Francqueville
,
F.
,
Sehr
,
S.
,
Begley
,
M. R.
, and
Wadley
,
H. N. G.
,
2016
, “
Response of Ytterbium Disilicate–Silicon Environmental Barrier Coatings to Thermal Cycling in Water Vapor
,”
Acta Mater.
,
106
, pp.
1
14
.10.1016/j.actamat.2015.12.053
17.
Kane
,
K. A.
,
Garcia
,
E.
,
Uwanyuze
,
S.
,
Lance
,
M.
,
Unocic
,
K. A.
,
Sampath
,
S.
, and
Pint
,
B. A.
,
2021
, “
Steam Oxidation of Ytterbium Disilicate Environmental Barrier Coatings With and Without a Silicon Bond Coat
,”
J. Am. Ceram. Soc.
,
104
(
5
), pp.
2285
2300
.10.1111/jace.17650
18.
Lee
,
K. N.
,
Fox
,
D. S.
,
Eldridge
,
J. I.
,
Zhu
,
D.
,
Robinson
,
R. C.
,
Bansal
,
N. P.
, and
Miller
,
R. A.
,
2003
, “
Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS
,”
J. Am. Ceram. Soc.
,
86
(
8
), pp.
1299
1306
.10.1111/j.1151-2916.2003.tb03466.x
19.
Panakarajupally
,
R. P.
,
Morscher
,
G. N.
, and
Shi
,
J.
,
2023
, “
Mechanical Characterization of Bi-Layer Environmental Barrier Coatings Coatings Under Tension and Bending Using Acoustic Emission and Digital Image Correlation
,”
ASME J. Eng. Gas Turbines Power
,
146
(
2
), p.
021008
.10.1115/1.4063385
20.
Richards
,
B. T.
,
Zhu
,
D.
,
Ghosn
,
L. J.
, and
Wadley
,
H. N. G.
,
2015
, “
Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Systems: Preliminary Assessments
,”
Developments in Strategic Ceramic Materials
,
Wiley Ltd.
, Hoboken, NJ, pp.
219
237
.
21.
Morscher
,
G.
,
1999
, “
Modal Acoustic Emission of Damage Accumulation in a Woven SiC/SiC Composite
,”
Compos. Sci. Technol.
,
59
(
5
), pp.
687
697
.10.1016/S0266-3538(98)00121-3
22.
Morscher
,
G.
,
Singh
,
M.
,
Kiser
,
D.
,
Freedman
,
M.
, and
Bhatt
,
R.
,
2007
, “
Modeling Stress-Dependent Matrix Cracking and Stress-Strain Behavior in 2D Woven SiC Fiber Reinforced CVI SiC Composites
,”
Compos. Sci. Technol.
,
67
(
6
), pp.
1009
1017
.10.1016/j.compscitech.2006.06.007
23.
Morscher
,
G. N.
, and
Maxwell
,
R.
,
2019
, “
Monitoring Tensile Fatigue Crack Growth and Fiber Failure Around a Notch in Laminate SIC/SIC Composites Utilizing Acoustic Emission, Electrical Resistance, and Digital Image Correlation
,”
J. Eur. Ceram. Soc.
,
39
(
2–3
), pp.
229
239
.10.1016/j.jeurceramsoc.2018.08.049
24.
Baker
,
C.
,
Morscher
,
G. N.
,
Pujar
,
V. V.
, and
Lemanski
,
J. R.
,
2015
, “
Transverse Cracking in Carbon Fiber Reinforced Polymer Composites: Modal Acoustic Emission and Peak Frequency Analysis
,”
Compos. Sci. Technol.
,
116
, pp.
26
32
.10.1016/j.compscitech.2015.05.005
You do not currently have access to this content.