Abstract

Recent research on cofiring natural gas and hydrogen, a carbon-free clean fuel, aims to reduce greenhouse gas emissions from aging gas turbine power generation, a key energy issue. This approach can enhance old gas turbines and increase the proportion of combined cycle power plant utilization as coal-fired power plants in Korea gradually shut down. This study seeks optimal operating conditions for mixed fuels without modifying the F-class gas turbine combustor. Experiments were conducted using four different types of fuel nozzles (F-Class DLN combustors) under varying loads and cofiring rates. The test used actual machine operating conditions from 30% to 100% thermal load, with hydrogen cofired with natural gas up to 70% at each load. OH high-speed imaging and an OH-PLIF technique analyzed flame structure and characteristics. Dynamic pressure was measured to check combustion instability, and exhaust gas emissions were evaluated for combustion characteristics. Key findings include critical cofiring rates for each nozzle based on NOx emission levels and combustion dynamics. As the hydrogen cofiring rate increased, flame length decreased, and NOx levels rose rapidly beyond 30%vol. Dynamic pressure oscillations showed no significant variations compared to natural gas combustion. This study successfully derived a characteristic operation map for a single nozzle based on the hydrogen cofiring rate.

References

1.
Mac Kinnon
,
M. A.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2018
, “
The Role of Natural Gas and Its Infrastructure in Mitigating Greenhouse Gas Emissions, Improving Regional Air Quality, and Renewable Resource Integration
,”
Prog. Energy Combust. Sci.
,
64
, pp.
62
92
.10.1016/j.pecs.2017.10.002
2.
Guilbert
,
D.
, and
Vitale
,
G.
,
2021
, “
Hydrogen as a Clean and Sustainable Energy Vector for Global Transition From Fossil-Based to Zero-Carbon
,”
Clean Technol.
,
3
(
4
), pp.
881
909
.10.3390/cleantechnol3040051
3.
Anika
,
O. C.
,
Nnabuife
,
S. G.
,
Bello
,
A.
,
Okoroafor
,
E. R.
,
Kuang
,
B.
, and
Villa
,
R.
,
2022
, “
Prospects of Low and Zero-Carbon Renewable Fuels in 1.5-Degree Net Zero Emission Actualisation by 2050: A Critical Review
,”
Carbon Capture Sci. Technol.
,
5
, p.
100072
.10.1016/j.ccst.2022.100072
4.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
5.
Kalmykov
,
K. S.
,
Kolbantseva
,
D. L.
,
Treschev
,
D. A.
,
Anikina
,
I. D.
,
Treshcheva
,
M. A.
,
Kalyutik
,
A. A.
, and
Vladimirov
,
I. A.
,
2024
, “
Improving the Efficiency of CHP Plants Through the Combined Production of Hydrogen, Heat and Electricity
,”
Int. J. Hydrogen Energy
,
51
, pp.
49
61
.10.1016/j.ijhydene.2023.08.125
6.
Noble
,
B.
,
2022
, “
Taking Gas Turbine Hydrogen Blending to the Next Level
,” EPRI, Report No. 3002023706.
7.
Risco-Bravo
,
A.
,
Varela
,
C.
,
Bartels
,
J.
, and
Zondervan
,
E.
,
2024
, “
From Green Hydrogen to Electricity: A Review on Recent Advances, Challenges, and Opportunities on Power-to-Hydrogen-to-Power Systems
,”
Renewable Sustainable Energy Rev.
,
189
, p.
113930
.10.1016/j.rser.2023.113930
8.
Harper
,
J.
,
2023
, “
Hydrogen Blending Demonstration Synopsis
,” EPRI, Report No. 3002028175.
9.
Payrhuber
,
K.
,
Jones
,
R. M.
, and
Scholz
,
M. H.
,
2008
, “
Gas Turbine Flexibility With Carbon Constrained Fuels
,”
ASME
Paper No. GT2008-50556.10.1115/GT2008-50556
10.
Nawaz
,
Z.
,
Imran
,
M.
,
Nawaz
,
S.
,
Ali
,
A.
, and
Sangi
,
A. R.
,
2022
, “
Strategic Prioritization of Action Plan Towards De-Carbonization and Sustainable Energy Transition for Developing Nations
,”
Int. J. Sustainable Develop. Plann.
,
17
(
2
), pp.
549
558
.10.18280/ijsdp.170220
11.
Sovacool
,
B. K.
,
Bergman
,
N.
,
Hopkins
,
D.
,
Jenkins
,
K. E.
,
Hielscher
,
S.
,
Goldthau
,
A.
, and
Brossmann
,
B.
,
2020
, “
Imagining Sustainable Energy and Mobility Transitions: Valence, Temporality, and Radicalism in 38 Visions of a Low-Carbon Future
,”
Soc. Stud. Sci.
,
50
(
4
), pp.
642
679
.10.1177/0306312720915283
12.
GE Gas Power, 2024, “
Hydrogen-Fueled Gas Turbines
,” GE Gas Power, accessed Apr. 12, 2024, https://www.ge.com/gas-power/future-of-energy/hydrogen-fueled-gas-turbines
13.
Mitsubishi Heavy Industries,
2024
, “
Clean Fuels: Hydrogen Gas Turbine
,” Mitsubishi Heavy Industries, accessed Apr. 12, 2024, https://solutions.mhi.com/clean-fuels/hydrogen-gas-turbine
14.
Siemens
,
2024
, “
Siemens Energy
,”
Siemens Energy
, accessed Apr. 12, 2024, https://www.siemens-energy.com/global/en/home.html
15.
Pignatelli
,
F.
,
Sanned
,
D.
,
Derafshzan
,
S.
,
Szasz
,
R. Z.
,
Bai
,
X. S.
,
Richter
,
M.
,
Ehn
,
A.
,
Lörstad
,
D.
,
Petersson
,
P.
, and
Subash
,
A. A.
,
2024
, “
Impact of Pilot Flame and Hydrogen Enrichment on Turbulent Methane/Hydrogen/Air Swirling Premixed Flames in a Model Gas Turbine Combustor
,”
Exp. Therm. Fluid Sci.
,
152
, p.
111124
.10.1016/j.expthermflusci.2023.111124
16.
Pignatelli
,
F.
,
Kim
,
H.
,
Subash
,
A. A.
,
Liu
,
X.
,
Szasz
,
R. Z.
,
Bai
,
X. S.
,
Brackmann
,
C.
,
Aldén
,
M.
, and
Lörstad
,
D.
,
2022
, “
Pilot Impact on Turbulent Premixed Methane/Air and Hydrogen-Enriched Methane/Air Flames in a Laboratory-Scale Gas Turbine Model Combustor
,”
Int. J. Hydrogen Energy
,
47
(
60
), pp.
25404
25417
.10.1016/j.ijhydene.2022.05.282
17.
Roy
,
R.
, and
Gupta
,
A. K.
,
2023
, “
Performance Enhancement of Swirl-Assisted Distributed Combustion With Hydrogen-Enriched Methane
,”
Appl. Energy
,
338
, p.
120919
.10.1016/j.apenergy.2023.120919
18.
An
,
Q.
,
Kheirkhah
,
S.
,
Bergthorson
,
J.
,
Yun
,
S.
,
Hwang
,
J.
,
Lee
,
W. J.
,
Kim
,
M. K.
,
Cho
,
J. H.
,
Kim
,
H. S.
, and
Vena
,
P.
,
2021
, “
Flame Stabilization Mechanisms and Shape Transitions in a 3D Printed, Hydrogen Enriched, Methane/Air Low-Swirl Burner
,”
Int. J. Hydrogen Energy
,
46
(
27
), pp.
14764
14779
.10.1016/j.ijhydene.2021.01.112
19.
Mao
,
R.
,
Wang
,
J.
,
Lin
,
W.
,
Han
,
W.
,
Zhang
,
W.
, and
Huang
,
Z.
,
2022
, “
Effects of Flow–Flame Interactions on the Stabilization of Ultra-Lean Swirling CH4/H2/Air Flames
,”
Fuel
,
319
, p.
123619
.10.1016/j.fuel.2022.123619
20.
Marragou
,
S.
,
Magnes
,
H.
,
Poinsot
,
T.
,
Selle
,
L.
, and
Schuller
,
T.
,
2022
, “
Stabilization Regimes and Pollutant Emissions From a Dual Fuel CH4/H2 and Dual Swirl Low NOx Burner
,”
Int. J. Hydrogen Energy
,
47
(
44
), pp.
19275
19288
.10.1016/j.ijhydene.2022.04.033
21.
Guiberti
,
T. F.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.10.1016/j.proci.2014.06.016
22.
Kim
,
H. S.
,
Arghode
,
V. K.
,
Linck
,
M. B.
, and
Gupta
,
A. K.
,
2009
, “
Hydrogen Addition Effects in a Confined Swirl-Stabilized Methane-Air Flame
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1054
1062
.10.1016/j.ijhydene.2008.10.034
23.
Schefer
,
R. W.
,
Wicksall
,
D. M.
, and
Agrawal
,
A. K.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.10.1016/S1540-7489(02)80108-0
24.
Rørtveit
,
G. J.
,
Zepter
,
K.
,
Skreiberg
,
Ø.
,
Fossum
,
M.
, and
Hustad
,
J. E.
,
2002
, “
A Comparison of Low-NOx Burners for Combustion of Methane and Hydrogen Mixtures
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1123
1129
.10.1016/S1540-7489(02)80142-0
25.
Kim
,
H. S.
,
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2009
, “
Flame Characteristics of Hydrogen-Enriched Methane–Air Premixed Swirling Flames
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1063
1073
.10.1016/j.ijhydene.2008.10.035
26.
Syred
,
N.
,
Abdulsada
,
M.
,
Griffiths
,
A.
,
O'Doherty
,
T.
, and
Bowen
,
P.
,
2012
, “
The Effect of Hydrogen Containing Fuel Blends Upon Flashback in Swirl Burners
,”
Appl. Energy
,
89
(
1
), pp.
106
110
.10.1016/j.apenergy.2011.01.057
27.
Ebi
,
D.
,
Bombach
,
R.
, and
Jansohn
,
P.
,
2021
, “
Swirl Flame Boundary Layer Flashback at Elevated Pressure: Modes of Propagation and Effect of Hydrogen Addition
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6345
6353
.10.1016/j.proci.2020.06.305
28.
Tong
,
Y.
,
Yu
,
S.
,
Liu
,
X.
, and
Klingmann
,
J.
,
2017
, “
Experimental Study on Dynamics of a Confined Low Swirl Partially Premixed Methane-Hydrogen-Air Flame
,”
Int. J. Hydrogen Energy
,
42
(
44
), pp.
27400
27415
.10.1016/j.ijhydene.2017.09.066
29.
Strakey
,
P.
,
Sidwell
,
T.
, and
Ontko
,
J.
,
2007
, “
Investigation of the Effects of Hydrogen Addition on Lean Extinction in a Swirl Stabilized Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3173
3180
.10.1016/j.proci.2006.07.077
30.
Cozzi
,
F.
, and
Coghe
,
A. L. D. O.
,
2006
, “
Behavior of Hydrogen-Enriched Non-Premixed Swirled Natural Gas Flames
,”
Int. J. Hydrogen Energy
,
31
(
6
), pp.
669
677
.10.1016/j.ijhydene.2005.05.013
31.
Gee
,
A. J.
,
Smith
,
N.
,
Chinnici
,
A.
, and
Medwell
,
P. R.
,
2024
, “
Characterisation of Turbulent Non-Premixed Hydrogen-Blended Flames in a Scaled Industrial Low-Swirl Burner
,”
Int. J. Hydrogen Energy
,
49
, pp.
747
757
.10.1016/j.ijhydene.2023.11.164
32.
Wicksall
,
D. M.
,
Agrawal
,
A. K.
,
Schefer
,
R. W.
, and
Keller
,
J. O.
,
2005
, “
Influence of Hydrogen Addition on Flow Structure in Confined Swirling Methane Flame
,”
J. Propul. Power
,
21
(
1
), pp.
16
24
.10.2514/1.4235
33.
Mao
,
R.
,
Wang
,
J.
,
Zhang
,
W.
,
An
,
Z.
,
Lin
,
W.
,
Zhang
,
M.
, and
Huang
,
Z.
,
2021
, “
Effect of High Hydrogen Enrichment on the Outer-Shear-Layer Flame of Confined Lean Premixed CH4/H2/Air Swirl Flames
,”
Int. J. Hydrogen Energy
,
46
(
34
), pp.
17969
17981
.10.1016/j.ijhydene.2021.02.181
34.
Li
,
M.
,
Tong
,
Y.
,
Klingmann
,
J.
, and
Thern
,
M.
,
2017
, “
Experimental Study of Hydrogen Addition Effects on a Swirl-Stabilized Methane-Air Flame
,”
Energies
,
10
(
11
), p.
1769
.10.3390/en10111769
35.
Nguyen
,
O.
, and
Samuelsen
,
S.
,
1999
, “
The Effect of Discrete Pilot Hydrogen Dopant Injection on the Lean Blowout Performance of a Model Gas Turbine Combustor
,”
ASME
Paper No. 99-GT-359.10.1115/99-GT-359
36.
Ren
,
J. Y.
,
Qin
,
W.
,
Egolfopoulos
,
F. N.
,
Mak
,
H.
, and
Tsotsis
,
T. T.
,
2001
, “
Methane Reforming and Its Potential Effect on the Efficiency and Pollutant Emissions of Lean Methane–Air Combustion
,”
Chem. Eng. Sci.
,
56
(
4
), pp.
1541
1549
.10.1016/S0009-2509(00)00381-X
37.
Morris
,
J. D.
,
Symonds
,
R. A.
,
Ballard
,
F. L.
, and
Banti
,
A.
,
1998
, “
Combustion Aspects of Application of Hydrogen and Natural Gas Fuel Mixtures to MS9001E DLN-1 Gas Turbines at Elsta Plant, Terneuzen, The Netherlands
,”
ASME
Paper No. 98-GT-359.10.1115/98-GT-359
38.
Phillips
,
J. N.
, and
Roby
,
R. J.
,
1999
, “
Enhanced Gas Turbine Combustor Performance Using H2-Enriched Natural Gas
,”
ASME
Paper No. 99-GT-115.10.1115/99-GT-115
39.
Schefer
,
R. W.
,
2003
, “
Hydrogen Enrichment for Improved Lean Flame Stability
,”
Int. J. Hydrogen Energy
,
28
(
10
), pp.
1131
1141
.10.1016/S0360-3199(02)00199-4
40.
Park
,
S.
,
Shin
,
J.
,
Park
,
J.
,
Lee
,
S.
, and
Choi
,
N.
,
2023
, “
Comparison of Hydrogen and Ammonia Co-Firing With Natural Gas Using a Practical Gas Turbine Combustor (501F) Under Atmospheric Conditions: Changes in Metal Temperature, Pattern Factor, and NOx Emission
,”
ASME
Paper No. GT2023-180080.10.1115/GT2023-180080
41.
Kim
,
C. S.
,
Hong
,
S. D.
,
Seo
,
D. U.
, and
Kim
,
Y. W.
,
2010
, “
Temperature Measurement With Radiation Correction for Very High Temperature Gas
,”
ASME
Paper No. IHTC14-23074.10.1115/IHTC14-23074
42.
Mehrpanahi
,
A.
,
Payganeh
,
G.
, and
Arbabtafti
,
M.
,
2017
, “
Dynamic Modeling of an Industrial Gas Turbine in Loading and Unloading Conditions Using a Gray Box Method
,”
Energy
,
120
, pp.
1012
1024
.10.1016/j.energy.2016.12.012
43.
Mersinligil
,
M.
,
Brouckaert
,
J. F.
, and
Desset
,
J.
,
2011
, “
Unsteady Pressure Measurements With a Fast Response Cooled Probe in High Temperature Gas Turbine Environments
,”
ASME J. Turbomach.
,
133
(
8
), p.
081603
.10.1115/1.4002276
44.
Rida
,
S.
,
Reynolds
,
R.
,
Chakravorty
,
S.
, and
Gupta
,
K.
,
2012
, “
Imprinted Effusion Modeling and Dynamic CD Calculation in Gas Turbine Combustors
,”
ASME
Paper No. GT2012-68804.10.1115/GT2012-68804
45.
Hemchandra
,
S.
,
2009
, “
Dynamics of Turbulent Premixed Flames in Acoustic Fields
,”
Ph.D. dissertation
,
Georgia Institute of Technology
, Atlanta, GA.http://hdl.handle.net/1853/29615
46.
Choi
,
J.
,
Choi
,
O.
,
Lee
,
M. C.
, and
Kim
,
N.
,
2020
, “
On the Observation of the Transient Behavior of Gas Turbine Combustion Instability Using the Entropy Analysis of Dynamic Pressure
,”
Exp. Therm. Fluid Sci.
,
115
, p.
110099
.10.1016/j.expthermflusci.2020.110099
47.
Dolan
,
B. J.
,
Villalva Gomez
,
R.
,
Zink
,
G.
,
Pack
,
S. D.
, and
Gutmark
,
E. J.
,
2015
, “
High-Speed Imaging of Combustion Oscillations in a Multiple Nozzle Staged Combustor
,”
AIAA
Paper No. 0168.10.2514/6.0168
48.
Lieuwen
,
T.
,
2005
, “
Online Combustor Stability Margin Assessment Using Dynamic Pressure Data
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
478
482
.10.1115/1.1850493
49.
Sen
,
A. K.
,
Litak
,
G.
,
Finney
,
C. E.
,
Daw
,
C. S.
, and
Wagner
,
R. M.
,
2010
, “
Analysis of Heat Release Dynamics in an Internal Combustion Engine Using Multifractals and Wavelets
,”
Appl. Energy
,
87
(
5
), pp.
1736
1743
.10.1016/j.apenergy.2009.11.009
You do not currently have access to this content.