Abstract

Stratified combustion improves the indicated thermal efficiency (ITE) of gasoline direct injection (GDI) engines, but the mechanism of its impact on unregulated emissions remains unclear. In this simulation-based study, double injection strategies were used to create stratified mixtures in the cylinder. The results indicated that as the second fuel injection quantity (FIQ) was increased or as the second fuel injection timing (FIT) was delayed, the oil-film mass increased, leading to an increase in soot emissions. The formation of a large area of stoichiometry (STO) region at the spark plug and at its right side increases the laminar flame velocity and improves the ITE. At 4000 rpm, the ITE of case2-2 (with a second FIT of −220 °CA after top dead center (ATDC) and a second FIQ of 65.5 mg) increased by 1.6% compared to the original scheme. With the increase in STO area, NOx emissions and the content of CH3OH and CH2O increased, while carbon monoxide (CO) and greenhouse gas emissions showed a decreasing trend. Compared to the original scheme, CO and greenhouse gas emissions decreased by 1.97% and 6.7%, respectively, in case2-2. This study provides guidance for the development of GDI engines with high ITE and low carbon emissions.

References

1.
Kumar
,
N.
,
Yadav
,
V. S.
, and
Banerjee
,
R.
,
2021
, “
Optimizing Emission Characteristics of a GDI Engine Using Grey Taguchi Methodology
,”
Mater. Today: Proc.
,
44
(
6
), pp.
4227
4232
.10.1016/j.matpr.2020.10.537
2.
Shuai, S., Ma, X., Li, Y., Qi, Y., and Xu, H., 2018, “Recent Progress in Automototive Gasoline Direct Injection Engine Technology,”
Automot. Innov.
, 1, pp.
95
113
.10.1007/s42154-018-0020-1
3.
Lee
,
K.
,
Pintor
,
D. L.
,
Assanis
,
D.
,
Cho
,
S.
, and
Hwang
,
J.
,
2023
, “
Fuel Temperature and Injection Pressure Influence on the Cold Start GDI Sprays
,”
Appl. Energy Combust. Sci.
,
16
, p.
100206
.10.1016/j.jaecs.2023.100206
4.
Anbari Attar
,
M.
,
Herfatmanesh
,
M. R.
,
Zhao
,
H.
, and
Cairns
,
A.
,
2014
, “
Experimental Investigation of Direct Injection Charge Cooling in Optical GDI Engine Using Tracer-Based PLIF Technique
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
96
108
.10.1016/j.expthermflusci.2014.07.020
5.
Lee
,
Z.
,
Kim
,
T.
,
Park
,
S.
, and
Park
,
S.
,
2020
, “
Review on Spray, Combustion, and Emission Characteristics of Recent Developed Direct-Injection Spark Ignition (DISI) Engine System With Multi-Hole Type Injector
,”
Fuel
,
259
, p.
116209
.10.1016/j.fuel.2019.116209
6.
Liati
,
A.
,
Schreiber
,
D.
,
Dimopoulos Eggenschwiler
,
P.
,
Arroyo Rojas Dasilva
,
Y.
, and
Spiteri
,
A. C.
,
2016
, “
Electron Microscopic Characterization of Soot Particulate Matter Emitted by Modern Direct Injection Gasoline Engines
,”
Combust. Flame
,
166
, pp.
307
315
.10.1016/j.combustflame.2016.01.031
7.
Wang
,
C.
,
Xu
,
H.
,
Herreros
,
J. M.
,
Wang
,
J.
, and
Cracknell
,
R.
,
2014
, “
Impact of Fuel and Injection System on Particle Emissions From a GDI Engine
,”
Appl. Energy
,
132
, pp.
178
191
.10.1016/j.apenergy.2014.06.012
8.
Hu
,
Z.
,
Lu
,
Z.
,
Song
,
B.
, and
Quan
,
Y.
,
2021
, “
Impact of Test Cycle on Mass, Number and Particle Size Distribution of Particulates Emitted From Gasoline Direct Injection Vehicles
,”
Sci. Total Environ.
,
762
, p.
143128
.10.1016/j.scitotenv.2020.143128
9.
Qian
,
Y.
,
Li
,
Z.
,
Yu
,
L.
,
Wang
,
X.
, and
Lu
,
X.
,
2019
, “
Review of the State-of-the-Art of Particulate Matter Emissions From Modern Gasoline Fueled Engines
,”
Appl. Energy
,
238
, pp.
1269
1298
.10.1016/j.apenergy.2019.01.179
10.
Fajardo
,
C.
, and
Sick
,
V.
,
2007
, “
Flow Field Assessment in a Fired Spray-Guided Spark-Ignition Direct-Injection Engine Based on UV Particle Image Velocimetry With Sub Crank Angle Resolution
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3023
3031
.10.1016/j.proci.2006.08.016
11.
Roy
,
M. K.
,
Kawahara
,
N.
,
Tomita
,
E.
, and
Fujitani
,
T.
,
2013
, “
Jet-Guided Combustion Characteristics and Local Fuel Concentration Measurements in a Hydrogen Direct-Injection Spark-Ignition Engine
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2977
2984
.10.1016/j.proci.2012.06.103
12.
Song
,
K.
,
Wang
,
X.
, and
Xie
,
H.
,
2018
, “
Trade-Off on Fuel Economy, Knock, and Combustion Stability for a Stratified Flame-Ignited Gasoline Engine
,”
Appl. Energy
,
220
, pp.
437
446
.10.1016/j.apenergy.2018.03.011
13.
Yang
,
D.
,
Wang
,
Z.
,
Wang
,
J.-X.
, and
Shuai
,
S.
,
2011
, “
Experimental Study of Fuel Stratification for HCCI High Load Extension
,”
Appl. Energy
,
88
(
9
), pp.
2949
2954
.10.1016/j.apenergy.2011.03.004
14.
Kim
,
D.
,
Shin
,
J.
,
Kim
,
J.
,
Park
,
J.
,
Son
,
Y.
, and
Park
,
S.
,
2023
, “
Effects of Spray Pattern and Piston Shape on in-Cylinder Flow in a Two-Cylinder Spray-Guided Gasoline Direct-Injection Optical Engine
,”
Appl. Therm. Eng.
,
234
, p.
121272
.10.1016/j.applthermaleng.2023.121272
15.
Banerjee
,
R.
, and
Kumar
,
S.
,
2016
, “
Numerical Investigation of Stratified Air/Fuel Preparation in a GDI Engine
,”
Appl. Therm. Eng.
,
104
, pp.
414
428
.10.1016/j.applthermaleng.2016.05.050
16.
Su
,
Y.-H.
, and
Kuo
,
T.-F.
,
2019
, “
CFD-Assisted Analysis of the Characteristics of Stratified-Charge Combustion Inside a Wall-Guided Gasoline Direct Injection Engine
,”
Energy
,
175
, pp.
151
164
.10.1016/j.energy.2019.03.031
17.
Jung
,
J.
,
Park
,
S.
, and
Bae
,
C.
,
2017
, “
Combustion Characteristics of Gasoline and n -Butane Under Lean Stratified Mixture Conditions in a Spray-Guided Direct Injection Spark Ignition Engine
,”
Fuel
,
187
, pp.
146
158
.10.1016/j.fuel.2016.08.085
18.
Oh
,
H.
, and
Bae
,
C.
,
2013
, “
Effects of the Injection Timing on Spray and Combustion Characteristics in a Spray-Guided DISI Engine Under Lean-Stratified Operation
,”
Fuel
,
107
, pp.
225
235
.10.1016/j.fuel.2013.01.019
19.
Chung
,
J.
,
Kim
,
N.
,
Choi
,
H.
, and
Min
,
K.
, “
Study on the Effect of Injection Strategies on Particulate Emission Characteristics Under Cold Start Using In-Cylinder Visualization
,”
SAE
Paper No. 2016-01-0822.10.4271/2016-01-0822
20.
Sjöberg
,
M.
, and
Reuss
,
D. L.
,
2013
, “
High-Speed Imaging of Spray-Guided DISI Engine Combustion With Near-TDC Injection of E85 for Ultra-Low NO and Soot
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2933
2940
.10.1016/j.proci.2012.05.033
21.
Costa
,
M.
,
Sorge
,
U.
,
Merola
,
S.
,
Irimescu
,
A.
,
La Villetta
,
M.
, and
Rocco
,
V.
,
2016
, “
Split Injection in a Homogeneous Stratified Gasoline Direct Injection Engine for High Combustion Efficiency and Low Pollutants Emission
,”
Energy
,
117
(
2
), pp.
405
415
.10.1016/j.energy.2016.03.065
22.
Li
,
Y.
,
Duan
,
X.
,
Liu
,
Y.
,
Liu
,
J.
,
Guo
,
G.
, and
Tang
,
Y.
,
2019
, “
Experimental Investigation the Impacts of Injection Strategies Coupled With Gasoline/Ethanol Blend on Combustion, Performance and Emissions Characteristics of a GDI Spark-Ignition Engine
,”
Fuel
,
256
, p.
115910
.10.1016/j.fuel.2019.115910
23.
Duan
,
X.
,
Liu
,
J.
,
Tan
,
Y.
,
Luo
,
B.
,
Guo
,
G.
,
Wu
,
Z.
,
Liu
,
W.
, and
Li
,
Y.
,
2018
, “
Influence of Single Injection and Two-Stagnation Injection Strategy on Thermodynamic Process and Performance of a Turbocharged Direct-Injection Spark-Ignition Engine Fuelled With Ethanol and Gasoline Blend
,”
Appl. Energy
,
228
, pp.
942
953
.10.1016/j.apenergy.2018.06.090
24.
Song
,
J.
,
Kim
,
T.
,
Jang
,
J.
, and
Park
,
S.
,
2015
, “
Effects of the Injection Strategy on the Mixture Formation and Combustion Characteristics in a DISI (Direct Injection Spark Ignition) Optical Engine
,”
Energy
,
93
, pp.
1758
1768
.10.1016/j.energy.2015.10.058
25.
Zhang
,
W.
,
Ma
,
X.
,
Shuai
,
S.
,
Wu
,
K.
,
Macias
,
J. R.
,
Shen
,
Y.
,
Yang
,
C.
, and
Guan
,
L.
,
2020
, “
Effect of Gasoline Aromatic Compositions Coupled With Single and Double Injection Strategy on GDI Engine Combustion and Emissions
,”
Fuel
,
278
, p.
118308
.10.1016/j.fuel.2020.118308
26.
Turkcan
,
A.
,
Altinkurt
,
M. D.
,
Coskun
,
G.
, and
Canakci
,
M.
,
2018
, “
Numerical and Experimental Investigations of the Effects of the Second Injection Timing and Alcohol-Gasoline Fuel Blends on Combustion and Emissions of an HCCI-DI Engine
,”
Fuel
,
219
, pp.
50
61
.10.1016/j.fuel.2018.01.061
27.
Ghadikolaei
,
M. A.
,
2016
, “
Effect of Alcohol Blend and Fumigation on Regulated and Unregulated Emissions of IC Engines—A Review
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
1440
1495
.10.1016/j.rser.2015.12.128
28.
Sakthivel
,
P.
,
Subramanian
,
K. A.
, and
Mathai
,
R.
,
2020
, “
Experimental Study on Unregulated Emission Characteristics of a Two-Wheeler With Ethanol-Gasoline Blends (E0 to E50)
,”
Fuel
,
262
, p.
116504
.10.1016/j.fuel.2019.116504
29.
Karavalakis
,
G.
,
Short
,
D.
,
Vu
,
D.
,
Villela
,
M.
,
Russell
,
R.
,
Jung
,
H.
,
Asa-Awuku
,
A.
, and
Durbin
,
T.
,
2014
, “
Regulated Emissions, Air Toxics, and Particle Emissions From SI-DI Light-Duty Vehicles Operating on Different Iso-Butanol and Ethanol Blends
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp.
183
199
.10.4271/2014-01-1451
30.
Gremminger
,
A.
,
Pihl
,
J.
,
Casapu
,
M.
,
Grunwaldt
,
J.-D.
,
Toops
,
T. J.
, and
Deutschmann
,
O.
,
2020
, “
PGM Based Catalysts for Exhaust-Gas After-Treatment Under Typical Diesel, Gasoline and Gas Engine Conditions With Focus on Methane and Formaldehyde Oxidation
,”
Appl. Catal., B
,
265
, p.
118571
.10.1016/j.apcatb.2019.118571
31.
Konsolakis
,
M.
,
2015
, “
Recent Advances on Nitrous Oxide (N2O) Decomposition Over Non-Noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects
,”
ACS Catal.
,
5
(
11
), pp.
6397
6421
.10.1021/acscatal.5b01605
32.
Colorado
,
A.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2017
, “
Direct Emissions of Nitrous Oxide From Combustion of Gaseous Fuels
,”
Int. J. Hydrogen Energy
,
42
(
1
), pp.
711
719
.10.1016/j.ijhydene.2016.09.202
33.
Qian
,
Y.
,
Wang
,
J. P.
,
Li
,
Z. L.
,
Jiang
,
C. X.
,
He
,
Z. Y.
,
Yu
,
L.
, and
Lu
,
X. C.
,
2020
, “
Improvement of Combustion Performance and Emissions in a Gasoline Direct Injection (GDI) Engine by Modulation of Fuel Volatility
,”
Fuel
,
268
, p.
117369
.10.1016/j.fuel.2020.117369
34.
He
,
Z.
,
Zhang
,
Y.
,
Yu
,
L.
,
Liu
,
G.
,
Zhou
,
D.
,
Qian
,
Y.
, and
Lu
,
X. C.
,
2022
, “
Impacts of Gasoline Fuel Components on GDI Engine Performances: Part 1, Influence on Gaseous Toxic Pollutants
,”
Fuel
,
310
, p.
122423
.10.1016/j.fuel.2021.122423
35.
Jiang
,
C.
,
Li
,
Z.
,
Qian
,
Y.
,
Wang
,
X.
,
Zhang
,
Y.
, and
Lu
,
X. C.
,
2018
, “
Experimental Studies on the co-Effects of Engine Operating Parameters and Fuel Functional Groups on the Performance and Emissions of a GDI Engine
,”
Appl. Therm. Eng.
,
140
, pp.
707
715
.10.1016/j.applthermaleng.2018.05.095
36.
Zardini
,
A. A.
,
Suarez-Bertoa
,
R.
,
Forni
,
F.
,
Montigny
,
F.
,
Otura-Garcia
,
M.
,
Carriero
,
M.
, and
Astorga
,
C.
,
2019
, “
Reducing the Exhaust Emissions of Unregulated Pollutants From Small Gasoline Engines With Alkylate Fuel and Low-Ash Lube Oil
,”
Environ. Res.
,
170
, pp.
203
214
.10.1016/j.envres.2018.12.021
37.
Gong
,
C.
,
Li
,
Z.
,
Liu
,
J.
, and
Liu
,
F.
,
2024
, “
Computational Study of Added H2 Impacts on Mixture Formation, OH Radical and Unregulated Emissions of Spark-Ignition Methanol Engine Under Various Boundary Parameters
,”
Fuel
,
360
, p.
130536
.10.1016/j.fuel.2023.130536
38.
Richards
,
K.
,
Senecal
,
P.
, and
Pomraning
,
E.
,
2018
,
CONVERGE 2.4 Manual
,
Convergent Science
,
Madison, WI
.
39.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
, “
A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines
,”
SAE
Paper No. 961961.10.4271/961961
40.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
, Cambridge, UK.
41.
Liu
,
Y. D.
,
Jia
,
M.
,
Xie
,
M. Z.
, and
Pang
,
B.
,
2012
, “
Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semi-Decoupling Methodology
,”
Energy Fuels
,
26
(
12
), pp.
7069
7083
.10.1021/ef301242b
42.
Harbi
,
A.
, and
Farooq
,
A.
,
2020
, “
Monte Carlo Based Laminar Flame Speed Correlation for Gasoline
,”
Combust. Flame
,
222
, pp.
61
69
.10.1016/j.combustflame.2020.08.023
43.
Guo
,
X.
,
Zheng
,
Q.
,
Zhou
,
C.
,
Huang
,
H.
,
Wang
,
Y.
,
Lu
,
H.
, and
Xing
,
K.
,
2024
, “
Assessment of the Effect of Dimethyl Carbonate on Regulated/Unregulated Emissions, Polycyclic Aromatic Hydrocarbons and Soot Particles
,”
Process Saf. Environ. Prot.
,
184
, pp.
445
461
.10.1016/j.psep.2024.02.009
44.
Bonatesta
,
F.
,
Chiappetta
,
E.
, and
La Rocca
,
A.
,
2014
, “
Part-Load Particulate Matter From a GDI Engine and the Connection With Combustion Characteristics
,”
Appl. Energy
,
124
, pp.
366
376
.10.1016/j.apenergy.2014.03.030
45.
Kumar
,
A.
, and
Subramanian
,
K. A.
,
2017
, “
Control of Greenhouse Gas Emissions (CO2, CH4 and N2O) of a Biodiesel (B100) Fueled Automotive Diesel Engine Using Increased Compression Ratio
,”
Appl. Therm. Eng.
,
127
, pp.
95
105
.10.1016/j.applthermaleng.2017.08.015
46.
Dai
,
G.
,
Zhang
,
S.
,
Zhang
,
Y.
,
Liao
,
Y.
,
Zhang
,
J.
,
Tan
,
H.
,
Mikulčić
,
H.
, and
Wang
,
X.
,
2023
, “
Experimental and Kinetic Study of N2O Thermal Decomposition in Pressurized Oxy-Combustion
,”
Fuel
,
346
, p.
128323
.10.1016/j.fuel.2023.128323
You do not currently have access to this content.