Abstract

Foreign object ingestion into engines has been studied for many years, but the focus has been on soft bodies (i.e., birds, ice). Recently, there has been a dramatic increase of uncrewed aircraft systems (UAS) in the airspace that represent a new threat to aircraft engines due to key components like the motor, battery, and camera being composed of hard components. Due to the differences between hard bodies and soft bodies, studies are required to understand the new threat these UAS pose to aircraft. The objective of this study is to investigate the impact of various factors such as impact orientation, fan rotational speed, relative translational speed, and radial impact location on the damage caused to a representative fan assembly. This study aims to analyze the sensitivity of these factors and their influence on the overall damage to the fan. The ingestion simulations will use a representative fan assembly model and a UAS model that has been experimentally validated at the conditions of an ingestion. This work will identify critical parameters of the ingestion and then utilize them to anticipate the extent of damage that may arise during specific stages of a flight where an ingestion is most probable. Moreover, it also compares these cases with some known baseline cases, such as a fan blade out (FBO) and bird ingestion of similar mass, to understand the likely severity compared to more studied common cases.

References

1.
Michael
,
R.
,
1986
, “
Keep Your Eye on the Birdie: Aircraft Engine Bird Ingestion
,”
J. Air Law Commer.
,
51
(
4
), pp.
1007
1036
.https://scholar.smu.edu/cgi/viewcontent.cgi?params=/context/jalc/article/1777/&path_info=33_51JAirL_Com1007_1985_1986_.pdf
2.
National Transportation Safety Board
,
2009
, “
Loss of Thrust in Both Engines After Encountering a Flock of Birds and Subsequent Ditching on the Hudson River U.S. Airways Flight 1549 Airbus A320 214, N106 US Weehawken, New Jersey, January 15, 2009
,” NTSB, Washington, DC, Report No.
NTSB/AAR-10/03 PB2010-910403.
https://i2.cdn.turner.com/cnn/2016/images/09/07/flight.1548.ntsb..pdf
3.
Lakshman
,
N.
,
Raj
,
R.
, and
Mukkamala
,
Y.
,
2014
, “
Bird Strike Analysis of Jet Engine Fan Blade
,”
IEEE Aerospace Conference
,
Big Sky, MT
, Mar. 1–8, pp.
1
7
.10.1109/AERO.2014.6836249
4.
Avrenli
,
K.
, and
Dempsey
,
B.
,
2014
, “
Statistical Analysis of Aircraft-Bird Strikes Resulting in Engine Failure
,”
Transp. Res. Rec.
,
2449
(
1
), pp.
14
23
.10.3141/2449-02
5.
Metz
,
I.
,
Ellerbroek
,
J.
,
Mühlhausen
,
T.
,
Kügler
,
D.
, and
Hoekstra
,
J.
,
2020
, “
The Bird Strike Challenge
,”
Aerospace
,
7
(
3
), p.
26
.10.3390/aerospace7030026
6.
FAA
, 2024, “
Code of Federal Regulations: Aeronautics and Space, PART 33-AIRWORTHINESS STANDARDS:AIRCRAFT ENGINES, Subpart E-Design and Construction; Turbine Aircraft Engines
,” Federal Aviation Administration, Washington, DC, accessed Aug. 13, 2024, https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-33/subpart-E
7.
FAA
,
2017
, “
FAA Releases Updated Drone Sighting Reports
,”
Federal Aviation Administration
,
Washington, DC
, Report.https://www.faa.gov/uas/resources/public_records/uas_sightings_report
8.
Askelson
,
M.
,
Cathey
,
H.
, and
Bruner
,
T.
,
2022
, “
Small UAS Detect and Avoid Requirements Necessary for Limited Beyond Visual Line of Sight (BVLOS) Operations: Final Report
,” Federal Aviation Administration, Washington, DC, Report No.
A18_A11 L.UAS.22.
https://www.assureuas.org/projects/small-uas-detect-and-avoid-requirements-necessary-for-limited-beyond-visual-line-of-sight-bvlos-operations/
9.
Riordan
,
J.
,
Manduhu
,
M.
,
Black
,
J.
,
Dow
,
A.
,
Dooly
,
G.
, and
Matalonga
,
S.
,
2021
, “
LiDAR Simulation for Performance Evaluation of UAS Detect and Avoid
,” International Conference on Unmanned Aircraft Systems (
ICUAS
), Athens, Greece, June 15–18, pp.
1355
1363
.10.1109/ICUAS51884.2021.9476817
10.
Balachandran
,
S.
,
Munoz
,
C.
, and
Consiglio
,
M.
,
2017
, “
Implicitly Coordinated Detect and Avoid Capability for Safe Autonomous Operation of Small UAS
,”
AIAA
Paper No. 2017-4484.10.2514/6.2017-4484
11.
Olivares
,
G.
,
Gomez
,
L.
,
Monteros
,
J.
,
Baldridge
,
R.
,
Zinzuwadia
,
C.
, and
Aldag
,
T.
,
2017
, “
Volume II - UAS Airborne Collision Severity Evaluation - Quadcopter
,” Federal Aviation Administration, Washington, DC, Report.https://assureuas.com/wpcontent/uploads/2021/06/A3-Volume-2.pdf
12.
Olivares
,
G.
,
Gomez
,
L.
,
Marco
,
R.
,
Ly
,
H.
,
del Rey
,
J. C.
,
Duling
,
C.
,
Zwiener
,
M.
, and
Perrin
,
Z.
,
2022
, “
Volume VI - UAS Airborne Collision Severity Evaluation - 14 CFR Part 29 Rotorcraft
,” Federal Aviation Administration, Washington, DC, Report.https://assureuas.com/wp-content/uploads/2021/06/Volume-VI-Airborne-Collision-Severity-Evaluation-14-CFR-Part-29-Rotorcraft.pdf
13.
Song
,
Y.
,
Horton
,
B.
, and
Bayandor
,
J.
,
2017
, “
Investigation of UAS Ingestion Into High-Bypass Engines, Part 1: Bird versus Drone
,”
AIAA
Paper No. 2017-0186.10.2514/6.2017-0186
14.
D'Souza
,
K.
,
Lyons
,
T.
,
Lacy
,
T.
, and
Kota
,
K.
,
2017
, “
Volume IV - UAS Airborne Collision Severity Evaluation - Engine Ingestion
,” FAA, Columbus, OH, Report.https://assureuas.com/wpcontent/uploads/2021/06/A3-OSU-Report.pdf
15.
Lyons
,
T.
, and
D'Souza
,
K.
,
2019
, “
Parametric Study of a Unmanned Aerial Vehicle Ingestion Into a Business Jet Size Fan Assembly Model
,”
ASME J. Eng. Gas Turbine Power
,
141
(
7
), p.
071002
.10.1115/1.4042286
16.
Liu
,
H.
,
Hasrizam
,
M.
,
Man
,
C.
,
Ng
,
B.
, and
Low
,
K.
,
2020
, “
Airborne Collision Evaluation Between Drone and Aircraft Engine: Effects of Position and Posture on Damage of Fan Blades
,”
AIAA
Paper No. 2020-3214.10.2514/6.2020-3214
17.
Liu
,
H.
,
Man
,
M.
, and
Low
,
K.
,
2021
, “
UAV Airborne Collision to Manned Aircraft Engine: Damage of Fan Blades and Resultant Thrust Loss
,”
Aerosp. Sci. Technol.
,
113
, p.
106645
.10.1016/j.ast.2021.106645
18.
Ly
,
H.
,
Olivares
,
G.
,
Gomez
,
L.
,
Castillo
,
L.
,
Arboleda
,
G.
, and
de Abreu
,
A.
,
2023
, “Annex B to Task A17: NIAR/WSU sUAS Numerical Model Validation (
Component and Full-Scale Level
) for Engine Ingestion Analysis,” Federal Aviation Administration, Washington, DC, Report.https://www.assureuas.org/wpcontent/uploads/2021/06/Task_A17_Cover_Report_Final.pdf
19.
Duling
,
C.
,
2023
, “
Annex C to Task A17: Airborne Collision Severity Evaluation - Engine Ingest Test Report
,” Federal Aviation Administration, Washington, DC, Report.https://assureuas.com/wpcontent/uploads/2021/06/Task_A17_Final_Report_UAH_AnnexC.pdf
20.
D'Souza
,
K.
,
Wong
,
M.
,
Sirivolu
,
D.
,
Perrin
,
Z.
,
Zwiener
,
M.
,
Duling
,
C.
,
Gomez
,
L.
, and
Olivares
,
G.
,
2024
, “
Experimental Validation of a UAS at Engine Ingestion Conditions: Part I Experiments
,”
Aerosp. Sci. Technol.
,
150
, p.
109178
.10.1016/j.ast.2024.109178
21.
D'Souza
,
K.
,
Wong
,
M.
,
Sirivolu
,
D.
,
Gomez
,
L.
,
Olivares
,
G.
,
Perrin
,
Z.
,
Zwiener
,
M.
, and
Duling
,
C.
,
2024
, “
Experimental Validation of a UAS at Engine Ingestion Conditions: Part 2 Model Validation
,”
Aerosp. Sci. Technol.
,
150
, p.
109179
.10.1016/j.ast.2024.109179
22.
Lyons
,
T.
,
Sirivolu
,
D.
, and
D'Souza
,
K.
,
2022
, “
Stress State Characterization for a Generic Titanium Fan During Bird Ingestion
,”
AIAA J.
,
2022
, pp.
1
12
.10.2514/1.J061712
23.
D'Souza
,
K.
,
Sirivolu
,
D.
,
Wong
,
M.
, and
Kurstak
,
E.
,
2023
, “
Annex A to Task A17: OSU Representative Fan Model and UAS Ingestion Studies
,” Federal Aviation Administration, Washington, DC, Report.https://assureuas.com/wpcontent/uploads/2021/06/Task_A17_Final_Report_OSU_AnnexA.pdf
24.
Haight
,
S.
,
Wang
,
L.
,
Bois
,
P. D.
,
Carney
,
K.
, and
Kan
,
C.
,
2016
, “
Development of a Titanium Alloy Ti-6Al-4V Material Model Used in LS-DYNA
,” Federal Aviation Administration, Washington, DC, Report.https://rosap.ntl.bts.gov/view/dot/57630/dot_57630_DS1.pdf
25.
Ansys
, 2022, “
LS-DYNA Aerospace Working Group (AWG) Website
,” LS-DYNA Aerospace Working Group, accessed June 1, 2022, https://awg.ansys.com/Welcome
26.
Mattar
,
R.
,
D'Souza
,
K.
, and
Sirivolu
,
D.
,
2024
, “
Comparison of Ingestion of Different Size Hard and Soft Bodies Into a Representative Fan Assembly Model
,”
ASME
Paper No. GT2024-126793.
27.
Lyons
,
T.
, and
D'Souza
,
K.
,
2020
, “
Investigation of Mesh Regularization in MAT 224 for Subsequent Use in Impact Simulations
,”
LS-DYNA Conference
, Virtual event, June 10–11, pp.
1
16
.https://www.researchgate.net/publication/343022720_Investigation_of_Mesh_Regularization_in_MAT_224_for_Subsequent_Use_in_Impact_Simulations
28.
Liu
,
M.
, and
Liu
,
G.
,
2010
, “
Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
17
(
1
), pp.
25
76
.10.1007/s11831-010-9040-7
29.
LS-DYNA Aerospace Working Group
,
2013
, “
LS-DYNA Aerospace Working Group Modeling Guidelines Document
,” LS-DYNA Aerospace Working Group, accessed Aug. 13, 2024, https://awg.ansys.com/MGD
30.
Hedayati
,
R.
, and
Sadighi
,
M.
,
2016
,
BirdStrike: An Experimental, Theoritical, and Numerical Investigation
,
Elsevier Ltd
,
Cambridge, MA
.
31.
LS-DYNA
,
2021
, “
LS-DYNA Aerospace Working Group Mat 224 User Guide
,” LS-DYNA, accessed Aug. 13, 2024, https://awg.ansys.com/Material+Model+User+Guides+New
You do not currently have access to this content.