Abstract

Alternative low carbon fuel blends are a promising way toward clean energy transition in the transportation and power generation sectors. In this work, the objective was to study the combustion characteristics of one such low carbon fuel blend (premixed Ammonia, Methane, and Air) in a swirl stabilized gas turbine can combustor under varying percentage of pilot fuel flow (=8–10% of the main fuel flowrate) under atmospheric pressure conditions. Pure Methane was used as the pilot flame which helped in the ignition and stabilization of the main flame and was kept on throughout the experiment. Different volume percentage of Ammonia and Methane blends was analyzed (starting from 10% to 50% Ammonia in the main fuel blend and the rest being Methane) at Reynolds number of the incoming air ∼50,000, and at equivalence ratio = 0.6 and 0.7. Characteristics such as combustor liner wall heat load and flame stability were studied using the Infrared Thermography technique and High-Speed flame imaging, respectively. In addition, both carbon and NOx emission trends were estimated for selected cases using the convergecfd software under steady-state conditions incorporating the Reynolds-averaged Navier-Stokes (RANS) re-normalization group (RNG) k–ϵ and SAGE modeling techniques. Among all cases, wall heat load was observed to be the least for the 50% Ammonia-50% Methane case, and for cases under reduced pilot percentage. Also, under reduced pilot percentage, flames were mostly unstable wherein the manifestation of instabilities at equivalence ratio = 0.6 and 0.7 was markedly different from one another.

References

1.
Dincer
,
I.
, and
Acar
,
C.
,
2015
, “
A Review on Clean Energy Solutions for Better Sustainability
,”
Int. J. Energy Res.
,
39
(
5
), pp.
585
606
.10.1002/er.3329
2.
Ritchie
,
H.
, and
Rosado
,
P.
,
2020
, “
Energy Mix
,”
Our World in Data
, Oxford, UK.
3.
Thompson
,
L. G.
,
2010
, “
Climate Change: The Evidence and Our Options
,”
Behav. Anal.
,
33
(
2
), pp.
153
170
.10.1007/BF03392211
4.
Habibullah
,
M. S.
,
Din
,
B. H.
,
Tan
,
S.-H.
, and
Zahid
,
H.
,
2022
, “
Impact of Climate Change on Biodiversity Loss: Global Evidence
,”
Environ. Sci. Pollut. Res.
,
29
(
1
), pp.
1073
1086
.10.1007/s11356-021-15702-8
5.
Gielen
,
D.
,
Boshell
,
F.
,
Saygin
,
D.
,
Bazilian
,
M. D.
,
Wagner
,
N.
, and
Gorini
,
R.
,
2019
, “
The Role of Renewable Energy in the Global Energy Transformation
,”
Energy Strategy Rev.
,
24
, pp.
38
50
.10.1016/j.esr.2019.01.006
6.
Stancin
,
H.
,
Mikulcic
,
H.
,
Wang
,
X.
, and
Duic
,
N. Z.
,
2020
, “
A Review on Alternative Fuels in Future Energy System
,”
Renewable Sustainable Energy Rev.
,
128
, p.
109927
.10.1016/j.rser.2020.109927
7.
Yong
,
J. C.
,
Rahman
,
M. M.
, and
Asli
,
R. A.
,
2023
, “
Renewable Energy: A Brief Review
,”
AIP Conf. Proc.
,
2643
, p.
030028
.10.1063/5.0118959
8.
Elbaz
,
A. M.
,
Wang
,
S.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2022
, “
Review on the Recent Advances on Ammonia Combustion From the Fundamentals to the Applications
,”
Fuel Commun.
,
10
, p.
100053
.10.1016/j.jfueco.2022.100053
9.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
10.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W. I.
, and
Bowen
,
P. J.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
11.
Herbinet
,
O.
,
Bartocci
,
P.
, and
Dana
,
A. G.
,
2022
, “
On the Use of Ammonia as a FuelA Perspective
,”
Fuel Commun.
,
11
, p.
100064
.10.1016/j.jfueco.2022.100064
12.
Kurata
,
O.
,
Iki
,
N.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
, and
Hayakawa
,
A.
,
2017
, “
Performances and Emission Characteristics of NH3–Air and NH3–CH4–Air Combustion Gas-Turbine Power Generations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3351
3359
.10.1016/j.proci.2016.07.088
13.
Okafor
,
E. C.
,
Somarathne
,
K. K. A.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4597
4606
.10.1016/j.proci.2018.07.083
14.
Valera-Medina
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Pugh
,
D.
,
Beasley
,
P.
,
Hughes
,
T.
, and
Bowen
,
P.
,
2017
, “
Ammonia–Methane Combustion in Tangential Swirl Burners for Gas Turbine Power Generation
,”
Appl. Energy
,
185
, pp.
1362
1371
.10.1016/j.apenergy.2016.02.073
15.
Xiao
,
H.
,
Valera-Medina
,
A.
,
Marsh
,
R.
, and
Bowen
,
P. J.
,
2017
, “
Numerical Study Assessing Various Ammonia/Methane Reaction Models for Use Under Gas Turbine Conditions
,”
Fuel
,
196
, pp.
344
351
.10.1016/j.fuel.2017.01.095
16.
Honzawa
,
T.
,
Kai
,
R.
,
Okada
,
A.
,
Valera-Medina
,
A.
,
Bowen
,
P. J.
, and
Kurose
,
R.
,
2019
, “
Predictions of NO and CO Emissions in Ammonia/Methane/Air Combustion by LES Using a Non-Adiabatic Flamelet Generated Manifold
,”
Energy
,
186
, p.
115771
.10.1016/j.energy.2019.07.101
17.
Zhang
,
M.
,
An
,
Z.
,
Wei
,
X.
,
Wang
,
J.
,
Huang
,
Z.
, and
Tan
,
H.
,
2021
, “
Emission Analysis of the CH4/NH3/Air Co-Firing Fuels in a Model Combustor
,”
Fuel
,
291
, p.
120135
.10.1016/j.fuel.2021.120135
18.
Wang
,
S.
,
Chong
,
C. T.
,
Xie
,
T.
,
Józsa
,
V.
, and
Ng
,
J.-H.
,
2023
, “
Ammonia/Methane Dual-Fuel Injection and Co-Firing Strategy in a Swirl Flame Combustor for Pollutant Emissions Control
,”
Energy
,
281
, p.
128221
.10.1016/j.energy.2023.128221
19.
Avila
,
C.
,
Wang
,
G.
,
Zhu
,
X.
,
Es-Sebbar
,
E.-T.
,
Abdullah
,
M.
,
Younes
,
M.
,
Jamal
,
A.
,
Guiberti
,
T.
, and
Roberts
,
W. L.
,
2022
, “
Lean Stability Limits and Exhaust Emissions of Ammonia-Methane-Air Swirl Flames at Micro Gas Turbine Relevant Pressure
,”
ASME
Paper No. GT2022-78304.10.1115/GT2022-78304
20.
Ávila
,
C. D.
,
Cardona
,
S.
,
Abdullah
,
M.
,
Younes
,
M.
,
Jamal
,
A.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2023
, “
Experimental Assessment of the Performance of a Commercial Micro Gas Turbine Fueled by Ammonia-Methane Blends
,”
Appl. Energy Combust. Sci.
,
13
, p.
100104
.10.1016/j.jaecs.2022.100104
21.
Li
,
J.
,
Kwon
,
H.
,
Seksinsky
,
D.
,
Doleiden
,
D.
,
O'Connor
,
J.
,
Xuan
,
Y.
,
Akiki
,
M.
, and
Blust
,
J.
,
2022
, “
Describing the Mechanism of Instability Suppression Using a Central Pilot Flame With Coupled Experiments and Simulations
,”
ASME J. Eng. Gas Turbines Power
,
144
, p.
011015
.10.1115/1.4052384
22.
Patil
,
S.
,
Abraham
,
S.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.-K.
, and
Srinivasan
,
R.
,
2011
, “
Experimental and Numerical Investigation of Convective Heat Transfer in a Gas Turbine Can Combustor
,”
ASME J. Turbomach.
,
133
, p.
011028
.10.1115/1.4001173
23.
Gomez-Ramirez
,
D.
,
2016
, “
Heat Transfer and Flow Measurements in an Atmospheric Lean Pre-Mixed Combustor
,”
Ph.D. thesis
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.http://hdl.handle.net/10919/71812
24.
Park
,
S.
,
Gomez-Ramirez
,
D.
,
Gadiraju
,
S.
,
Kedukodi
,
S.
,
Ekkad
,
S. V.
,
Moon
,
H.-K.
,
Kim
,
Y.
, and
Srinivasan
,
R.
,
2018
, “
Flow Field and Wall Temperature Measurements for Reacting Flow in a Lean Premixed Swirl Stabilized Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
, p.
091503
.10.1115/1.4039462
25.
Ramakrishnan
,
K. R.
,
2021
, “
Characterization of Liner Wall Heat Load for a Low NOx Lean Premixed Swirl Stabilized Can Combustor Under Reacting Conditions
,”
Ph.D. thesis
,
North Carolina State University
,
Raleigh, NC
.https://www.proquest.com/openview/6283dbf25b7cfe5d7fc5e1251826421d/1?pqorigsite=gscholar&cbl=18750&diss=y
26.
Chaudhury
,
M. D.
,
Sahoo
,
A.
,
Ekkad
,
S. V.
, and
Narayanaswamy
,
V.
,
2023
, “
Combustor Wall Heat Transfer and Emission Characteristics of Premixed Ammonia/Methane/Air Blends in a Swirl-Stabilized Gas Turbine Combustor
,”
ASME
Paper No. IMECE2023-112466.10.1115/IMECE2023-112466
27.
Sergeev
,
O. A.
,
Shashkov
,
A. G.
, and
Umanskii
,
A. S.
,
1982
, “
Thermophysical Properties of Quartz Glass
,”
J. Eng. Phys. Thermophys.
,
43
(
6
), pp.
1375
1383
.10.1007/BF00824797
28.
Richards
,
K. J.
,
Senecal
,
K. P.
, and
Pomranin
,
E.
,
2023
, “
Converge 3.0
,” Convergent Science, Madison, WI, accessed Dec. 30, 2023, https://convergecfd.com/
29.
Vondal
,
J.
, and
Hajek
,
J.
,
2011
, “
Prediction of Flow Through Swirl Generator and Validation by Measured Data
,”
J. Phys.: Conf. Ser.
,
318
(
2
), p.
022026
.10.1088/1742-6596/318/2/022026
30.
Perini
,
F.
,
Zha
,
K.
,
Busch
,
S.
, and
Reitz
,
R.
,
2017
, “
Comparison of Linear, Non-Linear and Generalized RNG Based k-Epsilon Models for Turbulent Diesel Engine Flows
,”
SAE
Technical Paper No. 2017-01-0561.10.4271/2017-01-0561
31.
Li
,
R.
,
Konnov
,
A. A.
,
He
,
G.
,
Qin
,
F.
, and
Zhang
,
D.
,
2019
, “
Chemical Mechanism Development and Reduction for Combustion of NH3/H2/CH4 Mixtures
,”
Fuel
,
257
, p.
116059
.10.1016/j.fuel.2019.116059
32.
Richards
,
K. J.
,
Senecal
,
K. P.
, and
Pomranin
,
E.
,
2023
, “
Converge Manual 3.0
,” Convergent Science, Madison, WI, accessed Dec. 30, 2023, https://convergecfd.com/
33.
Chaudhury
,
M. D.
,
Ekkad
,
S. V.
, and
Kumar
,
G.
,
2022
, “
Numerical Simulation of Premixed Ammonia/Methane/Air Blends in a Swirl-Stabilized Gas Turbine Combustor
,”
AIAA
Paper No. 2023-0497.10.2514/6.2023-0497
34.
Zhang
,
M.
,
Wei
,
X.
,
Wang
,
J.
,
Huang
,
Z.
, and
Tan
,
H.
,
2021
, “
The Blow-Off and Transient Characteristics of Co-Firing Ammonia/Methane Fuels in a Swirl Combustor
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5181
5190
.10.1016/j.proci.2020.08.056
35.
Li
,
J.
,
Peluso
,
S.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2017
, “
Effect of Pilot Flame on Flame Macrostructure and Combustion Instability
,”
ASME
Paper No. GT2017-64079.10.1115/GT2017-64079
36.
Dhanuka
,
S. K.
,
Temme
,
J. E.
, and
Driscoll
,
J. F.
,
2011
, “
Unsteady Aspects of Lean Premixed Prevaporized Gas Turbine Combustors: Flame–Flame Interactions
,”
J. Propul. Power
,
27
(
3
), pp.
631
641
.10.2514/1.B34001
37.
Li
,
J.
,
2019
, “
An Experimental Study of the Effect of a Pilot Flame on Combustion Instabilities
,”
Ph.D. thesis
,
The Pennsylvania State University
,
State College, PA
.https://www.proquest.com/openview/373390d0a8edbc03328a4099c98316da/1?pq-origsite=gscholar&cbl=18750&diss=y
38.
Li
,
P.
,
Liu
,
Z.
,
Li
,
M.
,
Zhao
,
Y.
,
Qian
,
X.
, and
Ren
,
Y.
,
2023
, “
Investigation on the Reaction Mechanism of Methane Combustion Near Flammability Limits at Elevated Pressures and Temperatures
,”
Energy
,
269
, p.
126786
.10.1016/j.energy.2023.126786
39.
Ariemma
,
G. B.
,
Sorrentino
,
G.
,
Ragucci
,
R.
,
de Joannon
,
M.
, and
Sabia
,
P.
,
2022
, “
Ammonia/Methane Combustion: Stability and NOx Emissions
,”
Combust. Flame
,
241
, p.
112071
.10.1016/j.combustflame.2022.112071
You do not currently have access to this content.