Abstract

The lean blow-off (LBO) behavior of turbulent premixed bluff-body stabilized hydrocarbon flames and ammonia/hydrogen/nitrogen flame was investigated and compared both experimentally and numerically. Simultaneous high-speed PIV and OH-PLIF were employed to resolve temporal flame and flow field information, allowing the curvature and hydrodynamic strain rates along the flame surface to be calculated. OH* and NH2* chemiluminescence images were also used to examine flame structures at the same bulk flow velocity but at four equivalence ratios from far away from to near LBO. A NH3/H2/N2 (70%/22.5%/7.5%) flame is slightly more resilient to LBO compared with methane and propane flames at 20 m/s. The hydrocarbon flame structures change from “V-shape” to “M-shape” when approaching lean blow-off, resulting in incomplete reactions and finally trigger the LBO. However, the strong OH* intensity in the shear layer near flame root for the ammonia blend flames indicates a robust reaction which can increase flame stability. Widely-distributed positive curvature along the flame surface of the NH3/H2/N2 flames (Le < 1) may also enhance combustion. The smaller strain rates change along NH3/H2/N2 flame fronts due to less dramatic changes to the flame shape and position, which can extend the stability limits. Furthermore, the faster consumption rates of hydrogen near the flame root for the ammonia blend flames, and the lower temperature loss compared with the adiabatic temperature also contribute to the stabilization of ammonia blends near lean blow-off.

References

1.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K.
, and
Okafor
,
E.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
2.
Verkamp
,
F.
,
Hardin
,
M.
, and
Williams
,
J.
,
1967
, “
Ammonia Combustion Properties and Performance in Gas-Turbine Burners
,”
Symp. (Int.) Combust.
,
11
(
1
), pp.
985
992
.10.1016/S0082-0784(67)80225-X
3.
Kurata
,
O.
,
Iki
,
N.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
, and
Hayakawa
,
A.
,
2017
, “
Performances and Emission Characteristics of NH3-Air and NH3-CH4-Air Combustion Gas-Turbine Power Generations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3351
3359
.10.1016/j.proci.2016.07.088
4.
Okafor
,
E.
,
Somarathne
,
K.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Towards the Development of an Efficient low-NOx Ammonia Combustor for a Micro Gas Turbine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4597
4606
.10.1016/j.proci.2018.07.083
5.
Comotti
,
M.
, and
Frigo
,
S.
,
2015
, “
Hydrogen Generation System for Ammonia–Hydrogen Fuelled Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
40
(
33
), pp.
10673
10686
.10.1016/j.ijhydene.2015.06.080
6.
Wang
,
D.
,
Ji
,
C.
,
Wang
,
S.
,
Yang
,
J.
, and
Wang
,
Z.
,
2021
, “
Numerical Study of the Premixed Ammonia-Hydrogen Combustion Under Engine-Relevant Conditions
,”
Int. J. Hydrogen Energy
,
46
(
2
), pp.
2667
2683
.10.1016/j.ijhydene.2020.10.045
7.
Khateeb
,
A.
,
Guiberti
,
T.
,
Zhu
,
X.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W.
,
2020
, “
Stability Limits and NO Emissions of Technically-Premixed Ammonia-Hydrogen-Nitrogen-Air Swirl Flames
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
22008
22018
.10.1016/j.ijhydene.2020.05.236
8.
Kurz
,
P.
,
1957
, “
Some Factors Influencing Stability Limits of Bunsen Flames
,”
Combust. Flame
,
1
(
2
), pp.
162
178
.10.1016/0010-2180(57)90043-3
9.
Longwell
,
J.
,
Frost
,
E.
, and
Weiss
,
M.
,
1953
, “
Flame Stability in Bluff Body Recirculation Zones
,”
Ind. Eng. Chem.
,
45
(
8
), pp.
1629
1633
.10.1021/ie50524a019
10.
Khosravy el_Hossaini
,
M.
,
2013
, “
Review of the New Combustion Technologies in Modern Gas Turbines
,”
Progress in Gas Turbine Performance
, Intechopen, London, UK, pp.
953
978
.10.5772/54403
11.
Brewster
,
B.
,
Cannon
,
S.
,
Farmer
,
J.
, and
Meng
,
F.
,
1999
, “
Modeling of Lean Premixed Combustion in Stationary Gas Turbines
,”
Prog. Energy Combust. Sci.
,
25
(
4
), pp.
353
385
.10.1016/S0360-1285(98)00014-8
12.
Piehl
,
J.
,
Bravo
,
L.
,
Acosta
,
W.
,
Kumar
,
G.
,
Drennan
,
S.
, and
Samimi-Abianeh
,
O.
,
2018
, “
On Predictions of Fuel Effects on Lean Blow Off Limits in a Realistic Gas Turbine Combustor Using Finite Rate Chemistry
,”
ASME
Paper No. GT2018-77070.10.1115/GT2018-77070
13.
Esclapez
,
L.
,
Ma
,
P.
,
Mayhew
,
E.
,
Xu
,
R.
,
Stouffer
,
S.
,
Lee
,
T.
,
Wang
,
H.
, and
Ihme
,
M.
,
2017
, “
Fuel Effects on Lean Blow-Out in a Realistic Gas Turbine Combustor
,”
Combust. Flame
,
181
, pp.
82
99
.10.1016/j.combustflame.2017.02.035
14.
Khateeb
,
A.
,
Guiberti
,
T.
,
Zhu
,
X.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W.
,
2020
, “
Stability Limits and Exhaust NO Performances of Ammonia-Methane-Air Swirl Flames
,”
Exp. Therm. Fluid Sci.
,
114
, p.
110058
.10.1016/j.expthermflusci.2020.110058
15.
Shoshin
,
Y.
,
Bastiaans
,
R.
, and
de Goey
,
L.
,
2013
, “
Anomalous Blow-Off Behavior of Laminar Inverted Flames of Ultra-Lean Hydrogen–Methane–Air Mixtures
,”
Combust. Flame
,
160
(
3
), pp.
565
576
.10.1016/j.combustflame.2012.11.012
16.
Vance
,
F.
,
Shoshin
,
Y.
,
de Goey
,
L.
, and
van Oijen
,
J.
,
2022
, “
Quantifying the Impact of Heat Loss, Stretch and Preferential Diffusion Effects to the Anchoring of Bluff Body Stabilized Premixed Flames
,”
Combust. Flame
,
237
, p.
111729
.10.1016/j.combustflame.2021.111729
17.
Shanbhogue
,
S.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.10.1016/j.pecs.2008.07.003
18.
Kariuki
,
J.
,
Dawson
,
J.
, and
Mastorakos
,
E.
,
2012
, “
Measurements in Turbulent Premixed Bluff Body Flames Close to Blow-Off
,”
Combust. Flame
,
159
(
8
), pp.
2589
2607
.10.1016/j.combustflame.2012.01.005
19.
Wiseman
,
S.
,
Rieth
,
M.
,
Gruber
,
A.
,
Dawson
,
J.
, and
Chen
,
J.
,
2021
, “
A Comparison of the Blow-Out Behavior of Turbulent Premixed Ammonia/Hydrogen/Nitrogen-Air and Methane–Air Flames
,”
Procedings Combust. Inst.
,
38
(
2
), pp.
2869
2876
.10.1016/j.proci.2020.07.011
20.
Khateeb
,
A.
,
Guiberti
,
T.
,
Wang
,
G.
,
Boyette
,
W.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W.
,
2021
, “
Stability Limits and NO Emissions of Premixed Swirl Ammonia-Air Flames Enriched With Hydrogen or Methane at Elevated Pressures
,”
Int. J. Hydrogen Energy
,
46
(
21
), pp.
11969
11981
.10.1016/j.ijhydene.2021.01.036
21.
Zhu
,
X.
,
Khateeb
,
A.
,
Guiberti
,
T.
, and
Roberts
,
W.
,
2021
, “
NO and OH* Emission Characteristics of Very-Lean to Stoichiometric Ammonia-Hydrogen-Air Swirl Flames
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5155
5162
.10.1016/j.proci.2020.06.275
22.
Li
,
J.
,
Huang
,
H.
,
Kobayashi
,
N.
,
Wang
,
C.
, and
Yuan
,
H.
,
2017
, “
Numerical Study on Laminar Burning Velocity and Ignition Delay Time of Ammonia Flame With Hydrogen Addition
,”
Energy
,
126
, pp.
796
809
.10.1016/j.energy.2017.03.085
23.
Zukoski
,
E.
, and
Marbl
,
F.
,
1955
, “
The Role of Wake Transition in the Process of Flame Stabilization on Bluff Bodies
,”
AGARD Combustion Researches and Reviews
, pp.
167
180
.
24.
Yamaguchi
,
S.
,
Ohiwa
,
N.
, and
Hasegawa
,
T.
,
1985
, “
Structure and Blow-Off Mechanism of Rod-Stabilized Premixed Flame
,”
Combust. Flame
,
62
(
1
), pp.
31
41
.10.1016/0010-2180(85)90091-4
25.
Nair
,
S.
, and
Lieuwen
,
T.
,
2007
, “
Near-Blowoff Dynamics of a Bluff-Body Stabilized Flame
,”
J. Propul. Power
,
23
(
2
), pp.
421
427
.10.2514/1.24650
26.
Chaudhuri
,
S.
,
Kostka
,
S.
,
Renfro
,
M.
, and
Cetegen
,
B.
,
2010
, “
Blowoff Dynamics of Bluff Body Stabilized Turbulent Premixed Flames
,”
Combust. Flame
,
157
(
4
), pp.
790
802
.10.1016/j.combustflame.2009.10.020
27.
Dawson
,
J.
,
Gordon
,
R.
,
Kariuki
,
J.
,
Mastorakos
,
E.
,
Masri
,
A.
, and
Juddoo
,
M.
,
2011
, “
Visualization of Blow-Off Events in Bluff-Body Stabilized Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1559
1566
.10.1016/j.proci.2010.05.044
28.
Vance
,
F.
,
Shoshin
,
Y.
,
Van Oijen
,
J.
, and
De Goey
,
L.
,
2019
, “
Effect of Lewis Number on Premixed Laminar Lean-Limit Flames Stabilized on a Bluff Body
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1663
1672
.10.1016/j.proci.2018.07.072
29.
Law
,
C.
,
1989
, “
Dynamics of Stretched Flames
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1381
1402
.10.1016/S0082-0784(89)80149-3
30.
Chowdhury
,
B.
, and
Cetegen
,
B.
,
2018
, “
Effects of Free Stream Flow Turbulence on Blowoff Characteristics of Bluff-Body Stabilized Premixed Flames
,”
Combust. Flame
,
190
, pp.
302
316
.10.1016/j.combustflame.2017.12.002
31.
Law
,
C.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
Cambridge, UK
.
32.
Lipatnikov
,
A.
, and
Chomiak
,
J.
,
2005
, “
Molecular Transport Effects on Turbulent Flame Propagation and Structure
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
1
73
.10.1016/j.pecs.2004.07.001
33.
Sankaran
,
V.
, and
Menon
,
S.
,
2005
, “
Subgrid Combustion Modeling of 3-D Premixed Flames in the Thin-Reaction-Zone Regime
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
575
582
.10.1016/j.proci.2004.08.023
34.
Mukundakumar
,
N.
, and
Bastiaans
,
R.
,
2022
, “
DNS Study of Spherically Expanding Premixed Turbulent Ammonia-Hydrogen Flame Kernels, Effect of Equivalence Ratio and Hydrogen Content
,”
Energies
,
15
(
13
), p.
4749
.10.3390/en15134749
35.
Yang
,
S.
,
Saha
,
A.
,
Liang
,
W.
,
Wu
,
F.
, and
Law
,
C.
,
2018
, “
Extreme Role of Preferential Diffusion in Turbulent Flame Propagation
,”
Combust. Flame
,
188
, pp.
498
504
.10.1016/j.combustflame.2017.09.036
36.
Æsøy
,
E.
,
Aguilar
,
J.
,
Wiseman
,
S.
,
Bothien
,
M.
,
Worth
,
N.
, and
Dawson
,
J.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
37.
Addabbo
,
R.
,
Bechtold
,
J.
, and
Matalon
,
M.
,
2002
, “
Wrinkling of Spherically Expanding Flames
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1527
1535
.10.1016/S1540-7489(02)80187-0
38.
Somers
,
L.
,
1994
, “
The Simulation of Flat Flames With Detailed and Reduced Chemical Models
,”
Ph.D. thesis
,
Eindhoven University of Technology
,
Eindhoven, The Netherlands
.https://pure.tue.nl/ws/portalfiles/portal/1568899/420430.pdf
39.
GRI-Mech 3.0
,
2000
, “GRI-Mech 3.0,” accessed July 19, 2024, http://combustion.berkeley.edu/gri-mech/
40.
University of California
, San Diego,
2016
, “Chemical-Kinetic Mechanisms for Combustion Applications,” University of California, San Diego, San Diego, CA, accessed Dec. 14, 2016, https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
41.
Haq
,
M.
,
Sheppard
,
C.
,
Woolley
,
R.
,
Greenhalgh
,
D.
, and
Lockett
,
R.
,
2002
, “
Wrinkling and Curvature of Laminar and Turbulent Premixed Flames
,”
Combust. Flame
,
131
(
1–2
), pp.
1
15
.10.1016/S0010-2180(02)00383-8
42.
Law
,
C.
, and
Sung
,
C.
,
2000
, “
Structure, Aerodynamics, and Geometry of Premixed Flamelets
,”
Prog. Energy Combustion Science
,
26
(
4–6
), pp.
459
505
.10.1016/S0360-1285(00)00018-6
43.
Computational Chemistry Consortium
,
2021
, “C3 Releases First-of-its-kind Detailed Chemical Kinetic Mechanism for Surrogate Fuels,” Computational Chemistry Consortium, Madison, WI, accessed Dec. 28. 2021, https://fuelmech.org
44.
Werner
,
H.
, and
Wengle
,
H.
,
1993
, “
Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel
,”
Turbulent Shear Flows 8: Selected Papers From the Eighth International Symposium on Turbulent Shear Flows
, Munich, Germany, Sept. 9–11, pp.
155
168
.10.1007/978-3-642-77674-8_12
45.
Amsden
,
A.
,
1997
,
KIVA-3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,
Los Alamos National Laboratory
, Los Alamos, NM.
You do not currently have access to this content.