Abstract

Small and midsize gas turbines for distributed power generation have been widely used in recent years, with designers constantly seeking to improve efficiency by increasing operating temperatures. Therefore, accurate thermal mapping is now more critical than ever for validating new designs, but also very challenging in such a dynamic environment as a gas turbine. A novel advanced offline temperature mapping technology has been developed called thermal history coating (THC). Thermal History technology has distinct advantages including wide temperature measurement range (150 °C to >1600 °C), high durability, high-temperature resolution, single or multicycle operation, high spatial resolution (thousands of measurement points per component), and fully digitized computer-aided design (CAD) compatible data. Additionally, THC materials are REACH-compliant and can be used for both moving and stationary components. High-resolution thermal maps of the surface of three-dimensional (3D) CAD components can be delivered at the end of the process. For the first time ever this paper directly compares Thermal History technology with other methods such as Type-K sheathed thermocouples, uniform crystal temperature sensors (UCTS), and pyrometry on two stage-1 blades of a midsize Kawasaki gas turbine engine test. Temperature data obtained from the different temperature methods were compared qualitatively and quantitatively. Measurement data were also compared with the conjugate heat transfer (CHT) model for the particular internal cooling design of these blades. Further, the application of the THC on two identical blades allowed a direct comparison of component-to-component variations and indicated excellent repeatability of the THC data.

References

1.
Shaddix
,
C. R.
,
1999
,
Correcting Thermocouple Measurements for Radiation Loss: A Critical Review
,
American Society of Mechanical Engineers
,
New York
.
2.
Kerr
,
C.
, and
Ivey
,
P.
,
2004
, “
Optical Pyrometry for Gas Turbine Aeroengines
,”
Sensor Rev.
,
24
(
4
), pp.
378
386
.10.1108/02602280410558412
3.
Bird
,
C.
,
Mutton
,
J. E.
,
Shepherd
,
R.
,
Smith
,
M. D. W.
, and
Watson
,
H. M. L.
,
1998
, “
Surface Temperature Measurement in Turbines
,”
Advanced Non-Intrusive Instrumentation for Propulsion Engines
, Brussels, Belgium, Oct. 20–24, pp.
21
24
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2289392
4.
Volinsky
,
A. A.
, and
Ginzbursky
,
L.
,
2003
, “
Irradiated Cubic Single Crystal SiC as a High Temperature Sensor
,”
MRS Online Proceedings Library
, 792, pp.
51
56
.10.1557/PROC-792-R5.3
5.
Krewinkel
,
R.
,
Färber
,
J.
,
Lauer
,
M.
,
Frank
,
D.
,
Orth
,
U.
,
Gonzalez
,
A. Y.
,
Pilgrim
,
C.
,
Feist
,
J.
,
Saggese
,
R.
,
Berthier
,
S.
, and
Araguas
,
S.
,
2017
, “
Validation of Surface Temperature Measurements on a Combustor Liner Under Full-Load Conditions Using a Novel Thermal History Paint
,”
ASME J. Eng. Gas Turbine Power
,
139
(
4
), p.
041508
.10.1115/1.4034724
6.
Peral
,
D.
,
Zaid
,
A.
,
Benninghoven
,
C.
,
Araguas-Rodríguez
,
S.
,
Kluß
,
D.
,
Karagiannopoulos
,
S.
,
Krewinkel
,
R.
, and
Feist
,
J. P.
,
2022
, “
High-Resolution Thermal Profiling of a Combustor in a Non-Dedicated Test Using Thermal History Coatings
,”
ASME J. Turbomach.
,
144
(
11
), p.
111007
.10.1115/1.4054635
7.
Pilgrim
,
C. C.
,
Castillo
,
D.
,
Araguas-Rodriguez
,
S.
,
Karagiannopoulos
,
S.
,
Feist
,
J. P.
,
Redwood
,
A.
,
Zhang
,
Y.
,
Copeland
,
C.
,
Scobie
,
J.
, and
Sangan
,
C.
,
2020
, “
Thermal Profiling of Cooled Radial Turbine Wheel
,”
ASME
Paper No. GT2020-1493210.1115/GT2020-14932.
8.
Karagiannopoulos
,
S.
,
Rode
,
M.
,
Peral
,
D.
,
Castillo
,
D.
,
Araguas-Rodríguez
,
S.
,
Rai
,
K.
,
Inomata
,
R.
,
Iosifidis
,
G.
, and
Feist
,
J.
,
2022
, “
Advanced Thermal Profiling of Turbocharger Compressor Wheels Using Phosphorescence Thermal History Coatings
,”
ASME
Paper No. GT2022-80820.10.1115/GT2022-80820
9.
Rabhiou
,
A.
,
Feist
,
J.
,
Kempf
,
A.
,
Skinner
,
S.
, and
Heyes
,
A.
,
2011
, “
Phosphorescent Thermal History Sensors
,”
Sensor Actuators A Phys.
,
169
(
1
), pp.
18
26
.10.1016/j.sna.2011.04.022
10.
Feist
,
J. P.
,
Karmakar Biswas
,
S.
,
Pilgrim
,
C. C.
,
Sollazzo
,
P. Y.
, and
Berthier
,
S.
,
2015
, “
Off-Line Temperature Profiling Utilizing Phosphorescent Thermal History Paints and Coatings
,”
ASME J. Turbomach.
,
137
(
10
), p.
101003
.10.1115/1.4030259
11.
Araguas Rodriguez
,
S.
,
Ferran-Marques
,
M.
,
Pilgrim
,
C. C.
,
Kamnis
,
S.
,
Feist
,
J. P.
, and
Nicholls
,
J. R.
,
2020
, “
Thermal History Coatings - Part I: Influence of Atmospheric Plasma Spray Parameters on Performance
,”
ASME
Paper No. GT2020-16004.10.1115/GT2020-16004
12.
Tanaka
,
R.
,
Koji
,
T.
,
Ryu
,
M.
,
Matsuoka
,
A.
, and
Okuto
,
A.
,
2012
, “
Development of High Efficient 30 MW Class Gas Turbine: The Kawasaki L30A
,”
ASME
Paper No. GT2012-68668.10.1115/GT2012-68668
13.
Thomas
,
A.
,
2020
, “
LG Tech-Link Global
,”
LG Tech-Link Inc
.,
Gilbert, AZ
.
14.
Taniguchi
,
T.
,
Tanaka
,
R.
,
Shinoda
,
Y.
,
Ryu
,
M.
,
Moritz
,
N.
, and
Kusterer
,
K.
,
2012
, “
Application of an Optical Pyrometer to Newly Developed Industrial Gas Turbine
,”
ASME
Paper No. GT2012-68679.10.1115/GT2012-68679
15.
Taniguchi
,
T.
,
Sanbonsugi
,
K.
,
Ozaki
,
Y.
, and
Norimoto
,
A.
,
2006
, “
Temperature Measurement of High Speed Rotating Turbine Blades Using a Pyrometer
,”
ASME
Paper No. GT2006-90247.10.1115/GT2006-90247
16.
Feist
,
J. P.
,
Sollazzo
,
P. Y.
,
Berthier
,
S.
,
Charnley
,
B.
, and
Wells
,
J.
,
2012
, “
Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection
,”
ASME J. Eng. Gas Turbine Power
,
135
(
1
), pp.
191
200
.10.1115/Gt2012-69923
17.
Horiuchi
,
T.
,
Taniguchi
,
T.
,
Tanaka
,
R.
,
Ryu
,
M.
, and
Kazari
,
M.
,
2018
, “
Application of Conjugate Heat Transfer Analysis to Improvement of Cooled Turbine Vane and Blade for Industrial Gas Turbine
,”
ASME
Paper No. GT2018-75669.10.1115/GT2018-75669
18.
Peral
,
D.
,
Castillo
,
D.
,
Araguas
,
S.
,
Yañez Gonzalez
,
A.
,
Pilgrim
,
C. C.
,
Karagiannopoulos
,
S.
,
Feist
,
J. P.
, and
Skinner
,
S.
,
2019
, “
Reliable Temperature Measurement With Thermal History Paints: An Uncertainty Model
,”
ASME
Paper No. GT2019-92087.10.1115/GT2019-92087
19.
Ferran-Marqués
,
M.
,
Araguas-Rodriguez
,
S.
,
Pilgrim
,
C. C.
, and
Kang Lee
,
J. L.
,
2020
, “
Thermal History Coatings - Part II: Measurement Capability Above 1500
,”
ASME
Paper No. GT2020-16209.10.1115/GT2020-16209
20.
Machin
,
J.
,
Tucker
,
D.
, and
Pearce
,
J.
,
2021
, “
A Comprehensive Survey of Reported Thermocouple Drift Rates Since 1972
,”
Int. J. Thermophys.
,
42
(
10
), pp.
1
32
.10.1007/s10765-021-02892-z
21.
Scervini
,
M.
, and
Rae
,
C.
,
2013
, “
The Contributions to Drift of Positive and Negative Thermoelements in Type K MIMS Thermocouples
,”
AIP Conf. Proc.
, 1552(1), pp.
570
575
.10.1063/1.4819604
You do not currently have access to this content.