Abstract

This paper takes a low-speed axial contra-rotating compressor as the experimental object, and the sensor array is used to collect the pressure sequences in stall conditions for different speed configurations. These pressure data sets are then preprocessed to train the neural networks. A self-learning stall threshold method based on kernel density estimation (KDE) is utilized to obtain the alarm thresholds. By utilizing the best-performing long short-term memory (LSTM) model to predict the stall initiation time for 15 speed configurations with different stall characteristics, the results show that the model can provide early warning before stall for 11 speed configurations. For the rest four speed configurations, the stall initiation time predicted by LSTM is unsatisfactory. To overcome the poor generalizability of LSTM, a convolutional neural network (CNN) combined with LSTM (CNN–LSTM) stall warning method is developed. The stall warning results indicate that the CNN–LSTM has a better capability in fitting the nonlinear pressure stall data and issues warnings before a stall occurs for all speed configurations. By comparing the pressure time series predicted by LSTM and CNN–LSTM, it is obvious that the CNN–LSTM is more sensitive to perturbations than before stall occurs.

References

1.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.10.1115/1.4031473
2.
Epstein
,
A. H.
,
Ffowcs
,
J. E.
, and
Greitzer
,
E. M.
,
1989
, “
Active Suppression of Aerodynamic Instabilities in Turbomachines
,”
AIAA J. Propul. Power
,
5
(
2
), pp.
204
211
.10.2514/3.23137
3.
Day
,
I. J.
,
1993
, “
Active Suppression of Rotating Stall and Surge in Axial Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
40
47
.10.1115/1.2929216
4.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.10.1115/1.3239887
5.
Greitzer
,
E. M.
, and
Moore
,
F. K.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part II—Application
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
231
239
.10.1115/1.3239893
6.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Iwamoto
,
T.
, and
Ando
,
Y.
,
1991
, “
Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
281
287
.10.1115/1.2929102
7.
Dhingra
,
M.
,
Neumeier
,
Y.
,
Prasad
,
J. V. R.
, and
Shin
,
H.
,
2003
, “
Stall and Surge Precursors in Axial Compressors
,”
AIAA
Paper No. 2003-4425.10.2514/6.2003-4425
8.
Tahara
,
N.
,
Kurosaki
,
M.
,
Ohta
,
Y.
,
Outa
,
E.
,
Nakajima
,
T.
, and
Nakakita
,
T.
,
2006
, “
Early Stall Warning Technique for Axial-Flow Compressors
,”
ASME J. Turbomach.
,
129
(
3
), pp.
448
456
.10.1115/1.2447948
9.
Dhingra
,
M.
,
Neumeier
,
Y.
,
Prasad
,
J. V. R.
,
Breeze-Stringfellow
,
A.
,
Shin
,
H.
, and
Szucs
,
P. N.
,
2006
, “
A Stochastic Model for a Compressor Stability Measure
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
730
737
.10.1115/1.2718231
10.
Li
,
J. C.
,
Liu
,
Y.
,
Du
,
J.
, and
Zhang
,
H. W.
,
2020
, “
Automatic Stability Control Using Tip Air Injection in a Multi-Stage Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
98
, p.
105707
.10.1016/j.ast.2020.105707
11.
Sun
,
D. K.
,
Xu
,
R. Z.
,
Dong
,
X.
,
Li
,
J.
, and
Sun
,
X. F.
,
2024
, “
Aeroengine Stall Warning by Multicorrelation Analysis
,”
J. Propul. Power
,
40
(
1
), pp.
138
151
.10.2514/1.B39230
12.
Young
,
A.
,
Day
,
I. J.
, and
Pullan
,
G.
,
2013
, “
Stall Warning by Blade Pressure Signature Analysis
,”
ASME J. Turbomach.
,
135
(
1
), p.
011033
.10.1115/1.4006426
13.
Xu
,
R. Z.
,
Sun
,
D. K.
,
Dong
,
X.
,
Li
,
F. Y.
,
Sun
,
X. F.
, and
Li
,
J.
,
2019
, “
Application of Stall Warning Approach With Stall Precursor-Suppressed Casing Treatment on a Two-Stage Compressor
,”
J. Therm. Sci.
,
28
(
5
), pp.
862
874
.10.1007/s11630-019-1186-5
14.
Dong
,
X.
,
Li
,
F. Y.
,
Xu
,
R. Z.
,
Sun
,
D. K.
, and
Sun
,
X. F.
,
2019
, “
Further Investigation on Acoustic Stall-Warning Approach in Compressors
,”
ASME J. Turbomach.
,
141
(
6
), p.
061001
.10.1115/1.4041900
15.
Lou
,
F.
, and
Key
,
N. L.
,
2020
, “
Compressor Stall Warning Using Nonlinear Feature Extraction Algorithms
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121005
.10.1115/1.4048990
16.
Pincus
,
S. M.
,
1991
, “
Approximate Entropy as a Measure of System Complexity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
88
(
6
), pp.
2297
2301
.10.1073/pnas.88.6.2297
17.
Liu
,
Y.
,
Du
,
J.
,
Li
,
J. C.
,
Xu
,
Y.
,
Zhu
,
J. Q.
, and
Nie
,
C. Q.
,
2023
, “
A Stall Diagnosis Method Based on Entropy Feature Identification in Axial Compressors
,”
IJMSD
,
3
(
1
), pp.
73
84
.10.1002/msd2.12064
18.
Park
,
H. G.
,
1994
, “
Unsteady Disturbance Structures in Axial Flow Compressor Stall Inception
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.http://hdl.handle.net/1721.1/36476
19.
Yue
,
S. Y.
,
Wang
,
Y. G.
,
Wei
,
L. G.
,
Wang
,
H.
, and
Deng
,
S. H.
,
2018
, “
Experimental Investigation of the Unsteady Tip Clearance Flow in a Low-Speed Axial Contra-Rotating Compressor
,”
ASME
Paper No. GT2018-76055.10.1115/GT2018-76055
20.
Liu
,
Y.
,
Li
,
J. C.
,
Du
,
J.
,
Zhang
,
H. W.
, and
Nie
,
C. Q.
,
2022
, “
Stall Warning Strategy Based on Fast Wavelet Analysis in a Multistage Axial Flow Compressor
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
044501
.10.1115/1.4053104
21.
Yue
,
S. Y.
,
Wang
,
Y. G.
,
Zhang
,
Z.
,
Wei
,
L. G.
, and
Wang
,
H.
,
2021
, “
Experimental Investigation of Rotating Instability in a Contra-Rotating Axial Flow Compressor
,”
Aeronaut. J.
,
125
(
1286
), pp.
742
762
.10.1017/aer.2020.127
22.
Liu
,
Y.
,
Li
,
J. C.
,
Du
,
J.
,
Li
,
F.
, and
Zhang
,
H. W.
,
2019
, “
Application of Fast Wavelet Analysis on Early Stall Warning in Axial Compressors
,”
J. Therm. Sci.
,
28
(
5
), pp.
837
849
.10.1007/s11630-019-1207-4
23.
Liu
,
Y.
,
Li
,
J. C.
,
Du
,
J.
,
Zhang
,
H. W.
, and
Nie
,
C. Q.
,
2021
, “
Reliability Analysis for Stall Warning Methods in an Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
115
(
1
), p.
106816
.10.1016/j.ast.2021.106816
24.
Yue
,
S. Y.
,
Wang
,
Y. G.
,
Wei
,
L. G.
,
Zhang
,
Z.
, and
Wang
,
H.
,
2020
, “
The Joint Empirical Mode Decomposition-Local Mean Decomposition Method and Its Application to Time Series of Compressor Stall Process
,”
Aerosp. Sci. Technol.
,
105
, p.
105969
.10.1016/j.ast.2020.105969
25.
Olivier
,
J.
,
Viktor
,
S.
,
Bram
,
V.
,
Kurt
,
S.
,
Mia
,
L.
,
Steven
,
V.
,
Rik
,
V.
, and
Sofie
,
V. H.
,
2016
, “
Convolutional Neural Network Based Fault Detection for Rotating Machinery
,”
J. Sound Vib.
,
377
, pp.
331
345
.10.1016/j.jsv.2016.05.027
26.
Guo
,
X. J.
,
Chen
,
L.
, and
Shen
,
C. Q.
,
2016
, “
Hierarchical Adaptive Deep Convolution Neural Network and Its Application to Bearing Fault Diagnosis
,”
Measurement
,
93
, pp.
490
502
.10.1016/j.measurement.2016.07.054
27.
Thomas
,
K.
, and
Gottfried
,
R.
,
1994
, “
Time Series Forecasting Using Neural Networks
,”
ACM SIGAPL APL Quote Quad
,
25
(
1
), pp.
86
94
.10.1145/190468.190290
28.
Talebi
,
N.
,
Sadrnia
,
M. A.
, and
Darabi
,
A.
,
2014
, “
Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks
,”
Comput. Intell. Neurosci.
,
2014
, pp.
1
13
.10.1155/2014/580972
29.
Malhotra
,
P.
,
Vig
,
L.
,
Shroff
,
G.
, and
Agarwal
,
P.
,
2015
, “
Long Short Term Memory Networks for Anomaly Detection in Time Series
,”
The European Symposium on Artificial Neural Networks
, Bruges, Belgium, Apr. 22–24, pp.
89
94
.https://www.researchgate.net/publication/304782562_Long_Short_Term_Memory_Networks_for_Anomaly_Detection_in_Time_Series
30.
Hipple
,
S. M.
,
Bonilla
,
A. H.
,
Pezzini
,
P.
,
Shadle
,
L.
, and
Bryden
,
K. M.
,
2020
, “
Using Machine Learning Tools to Predict Compressor Stall
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070915
.10.1115/1.4046458
31.
Yue
,
S. Y.
,
Wang
,
Y. G.
,
Wei
,
L. G.
, and
Wang
,
H.
,
2020
, “
Experimental Investigation on the Development Process of Large-Scale Low-Speed Stall Disturbance in Contra-Rotating Compressor
,”
J. Therm. Sci.
,
29
(
5
), pp.
1282
1291
.10.1007/s11630-020-1341-z
32.
Payyappalli
,
M.
, and
Pradeep
,
A. M.
,
2020
, “
Pre-Stall Waves: Precursors to Stall Inception in a Contra-Rotating Axial Fan
,”
ASME
Paper No. GT2020-14371.10.1115/GT2020-14371
You do not currently have access to this content.