Abstract

Although prechamber (PC) is regarded as a promising solution to enhance ignition in lean-burn gas engines, a lack of comprehensive understanding of PC jet penetration dynamics remains. This study proposed a zero-dimensional (0D) model for PC jet penetration, considering the mixing of combustion products and unburned gases in jets and the floating ejection pressure. A combustion completion degree was defined by employing fuel properties and heat release to estimate the time-varying jet density. Pressure differences between the PC and the main chamber (MC) were referred to as the ejection pressure. Then, this model was validated against experimental data from a constant volume chamber (CVC) and a rapid compression and expansion machine (RCEM) with CH4-H2 blends at different equivalent ratios. Results showed that the proposed model can provide a good prediction in stationary and turbulent fields with the calibrated model coefficient. The overall jet penetration exhibits a t0.5 dependence due to its single-phase characteristic and the relatively lower density compared to the ambient gas in MC. The flame propagation speed and heat release in PC influence the combustion completion degree at the start of jet ejection. The mass fraction of burned gas in the ejected jet grows in response to the mixture equivalent ratio. Jet penetration is primarily driven by ejection pressure, with tip dynamics barely affected by the pressure difference after peaks. Tip penetration intensity rises with increasing fuel equivalent ratio and H2 addition, owing to the faster flame propagation. These findings can offer useful suggestions for model-based design and combustion model development for gas engines.

References

1.
Aakko-Saksa
,
P. T.
,
Lehtoranta
,
K.
,
Kuittinen
,
N.
,
Järvinen
,
A.
,
Jalkanen
,
J.-P.
,
Johnson
,
K.
,
Jung
,
H.
,
Ntziachristos
,
L.
,
Gagné
,
S.
,
Takahashi
,
C.
,
Karjalainen
,
P.
,
Rönkkö
,
T.
, and
Timonen
,
H.
,
2023
, “
Reduction in Greenhouse Gas and Other Emissions From Ship Engines: Current Trends and Future Options
,”
Prog. Energy Combust. Sci.
,
94
, p.
101055
.10.1016/j.pecs.2022.101055
2.
Zhou
,
X.
,
Li
,
T.
,
Chen
,
R.
,
Wei
,
Y.
,
Wang
,
X.
,
Wang
,
N.
,
Li
,
S.
,
Kuang
,
M.
, and
Yang
,
W.
,
2024
, “
Ammonia Marine Engine Design for Enhanced Efficiency and Reduced Greenhouse Gas Emissions
,”
Nat. Commun.
,
15
(
1
), p.
2110
.10.1038/s41467-024-46452-z
3.
Li
,
T.
,
Wang
,
N.
,
Zhang
,
Z.
,
Zhou
,
X.
,
Wang
,
X.
,
Chen
,
R.
,
Li
,
S.
, and
Yi
,
P.
,
2022
, “
A Comparison Between Turbulent Non-Premixed Jet Flames of CH4 and the 50%NH3 + 50%H2 Blend
,”
Combust. Flame
,
246
, p.
112477
.10.1016/j.combustflame.2022.112477
4.
Wang
,
N.
,
Huang
,
S.
,
Zhang
,
Z.
,
Li
,
T.
,
Yi
,
P.
,
Wu
,
D.
, and
Chen
,
G.
,
2021
, “
Laminar Burning Characteristics of Ammonia/Hydrogen/Air Mixtures With Laser Ignition
,”
Int. J. Hydrogen Energy
,
46
(
62
), pp.
31879
31893
.10.1016/j.ijhydene.2021.07.063
5.
Liu
,
X.
,
Silva
,
M.
,
Mohan
,
B.
,
AlRamadan
,
A. S.
,
Cenker
,
E.
, and
Im
,
H. G.
,
2023
, “
Computational Optimization of the Performance of a Heavy-Duty Natural Gas Pre-Chamber Engine
,”
Fuel
,
352
, p.
129075
.10.1016/j.fuel.2023.129075
6.
Kammerstätter
,
S.
,
Bauer
,
S.
, and
Sattelmayer
,
T.
,
2012
, “
Jet-Penetration in Prechamber-Ignited Lean Large-Bore Natural Gas Engines
,”
ASME
Paper No. ICEF2012-92031.10.1115/ICEF2012-92031
7.
Shi
,
Y.
,
Ge
,
H.-W.
, and
Reitz
,
R. D.
,
2011
, “
Scaling Laws for Diesel Combustion Systems
,”
Computational Optimization of Internal Combustion Engines
, Springer, Berlin, pp.
147
176
.10.1007/978-0-85729-619-1
8.
Desantes
,
J. M.
,
Arregle
,
J.
,
Lopez
,
J. J.
, and
Cronhjort
,
A.
,
2006
, “
Scaling Laws for Free Turbulent Gas Jets and Diesel-Like Sprays
,”
Atomization Sprays
,
16
(
4
), pp.
443
474
.10.1615/AtomizSpr.v16.i4.60
9.
Zhou
,
X.
,
Li
,
T.
, and
Yi
,
P.
,
2021
, “
Modeling of Diesel Spray Tip Penetration During Start-of-Injection Transients
,”
Int. J. Engine Res.
,
22
(
9
), pp.
3013
3029
.10.1177/1468087420957852
10.
Zhou
,
X.
, and
Li
,
T.
,
2021
, “
Modeling of the Entire Processes of Diesel Spray Tip Penetration Including the Start- and End-of-Injection Transients
,”
J. Energy Inst.
,
98
, pp.
271
281
.10.1016/j.joei.2021.07.007
11.
Wakuri
,
Y.
,
Fujii
,
M.
,
Amitani
,
T.
, and
Tsuneya
,
R.
,
1960
, “
Studies on the Penetration of Fuel Spray in a Diesel Engine
,”
Bull. JSME
,
3
(
9
), pp.
123
130
.10.1299/jsme1958.3.123
12.
Dent
,
J. C.
,
1971
, “
A Basis for the Comparison of Various Experimental Methods for Studying Spray Penetration
,”
SAE Trans.
,
80
, pp.
710368
710618
.10.4271/710571
13.
Hiroyasu
,
H.
, and
Arai
,
M.
,
1990
, “
Structures of Fuel Sprays in Diesel Engines
,”
J. Eng.
,
99
, pp.
1050
1061
.10.4271/900475
14.
Adler
,
D.
, and
Lyn
,
W.
,
1969
, “
The Evaporation and Mixing of a Liquid Fuel Spray in a Diesel Air Swirl
,”
Proceedings of the Institution of Mechanical Engineers, Conference Proceedings
,
SAGE Publications Sage UK
,
London, UK
, Sept. 1, pp.
171
180
.10.1243/PIME_CONF_1969_184_330_02
15.
Rife
,
J.
, and
Heywood
,
J. B.
,
1974
, “
Photographic and Performance Studies of Diesel Combustion With a Rapid Compression Machine
,”
SAE
Paper No. 740948.10.4271/740948
16.
Post
,
S.
,
Iyer
,
V.
, and
Abraham
,
J.
,
2000
, “
A Study of Near-Field Entrainment in Gas Jets and Sprays Under Diesel Conditions
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
385
395
.10.1115/1.483268
17.
Hill
,
P. G.
, and
Ouellette
,
P.
,
1999
, “
Transient Turbulent Gaseous Fuel Jets for Diesel Engines
,”
ASME J. Fluids Eng.
,
121
(
1
), pp.
93
101
.10.1115/1.2822018
18.
Ouellette
,
P.
, and
Hill
,
P. G.
,
2000
, “
Turbulent Transient Gas Injections
,”
ASME J. Fluids Eng.
,
122
(
4
), pp.
743
752
.10.1115/1.1319845
19.
Zhang
,
Z.
,
Li
,
T.
,
Chen
,
R.
,
Wang
,
N.
,
Wei
,
Y.
, and
Wu
,
D.
,
2021
, “
Injection Characteristics and Fuel-Air Mixing Process of Ammonia Jets in a Constant Volume Vessel
,”
Fuel
,
304
, p.
121408
.10.1016/j.fuel.2021.121408
20.
Zhou
,
X.
,
Li
,
T.
,
Lai
,
Z.
, and
Wei
,
Y.
,
2019
, “
Modeling Diesel Spray Tip and Tail Penetrations After End-of-Injection
,”
Fuel
,
237
, pp.
442
456
.10.1016/j.fuel.2018.10.029
21.
Fei
,
S.
,
Wang
,
J.
,
Deng
,
J.
,
Liu
,
Y.
,
Miao
,
X.
,
Zhang
,
Z.
, and
Li
,
L.
,
2022
, “
Mechanism of Flame Jet in a Single-Hole Active Pre-Chamber
,”
Chin. J. Automot. Eng.
,
12
(
5
), pp.
686
694 (in Chinese
).
22.
Gholamisheeri
,
M.
,
Thelen
,
B. C.
,
Gentz
,
G. R.
,
Wichman
,
I. S.
, and
Toulson
,
E.
,
2016
, “
Rapid Compression Machine Study of a Premixed, Variable Inlet Density and Flow Rate, Confined Turbulent Jet
,”
Combust. Flame
,
169
, pp.
321
332
.10.1016/j.combustflame.2016.05.001
23.
Liu
,
L.
,
Wen
,
X.
,
Xiong
,
Q.
, and
Ma
,
X.
,
2019
, “
Phenomenological Modeling of Combustion in Pre-Chamber and the Pilot Flame for Natural Gas Engines
,”
ASME
Paper No. ICEF2019-7189.10.1115/ICEF2019-7189
24.
Desantes
,
J. M.
,
López
,
J. J.
,
Novella
,
R.
, and
Antolini
,
J.
,
2021
, “
Pre-Chamber Ignition Systems: A Methodological Proposal to Reproduce a Reference Case in a Simplified Experimental Facility for Fundamental Studies
,”
Int. J. Engine Res.
,
22
(
11
), pp.
3358
3371
.10.1177/1468087420971115
25.
Chen
,
R.
,
Kuboyama
,
T.
,
Moriyoshi
,
Y.
,
Yasueda
,
S.
,
Doyen
,
V.
, and
Martin
,
J.-B.
,
2019
, “
Effects of Engine Operating Condition and Fuel Property on Pre-Ignition Phenomenon in a Highly Boosted Premixed Natural Gas Engine
,”
SAE
Paper No. 2019-01-2154.10.4271/2019-01-2154
26.
Tilz
,
A.
,
Kiesling
,
C.
,
Meyer
,
G.
,
Nickl
,
A.
,
Pirker
,
G.
, and
Wimmer
,
A.
,
2020
, “
Experimental Investigation of the Influence of Ignition System Parameters on Combustion Behavior in Large Lean Burn Spark Ignited Gas Engines
,”
Exp. Therm. Fluid Sci.
,
119
, p.
110176
.10.1016/j.expthermflusci.2020.110176
27.
Kyrtatos
,
P.
,
Bardis
,
K.
,
Bolla
,
M.
,
Denisov
,
A.
,
Wright
,
Y.
,
Herrmann
,
K.
, and
Boulouchos
,
K.
,
2018
, “
Transferability of Insights From Fundamental Investigations Into Practical Applications of Prechamber Cobustion Systems
,”
Ignition Systems for Gasoline Engines: 4th International Conference
, Berlin, Germany, Dec. 6–7, Paper No. 1000088237.10.5445/IR/1000088611
28.
Terada
,
K.
,
Ohta
,
Y.
,
Kitayama
,
M.
, and
Ito
,
M.
, “
On the Calculation of Heat Release Rate in IDI Engines
,”
Trans. JSME
, 55(514), p.
88-1039A
.
29.
Olsen
,
D. B.
, and
Kirkpatrick
,
A. T.
,
2008
, “
Experimental Examination of Prechamber Heat Release in a Large Bore Natural Gas Engine
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
052802
.10.1115/1.2906182
30.
Zhang
,
Z.
,
Li
,
T.
,
Zhou
,
X.
,
Wang
,
N.
, and
Huang
,
S.
,
2021
, “
Quantitative 1-D LIBS Measurements of Fuel Concentration in Natural Gas Jets at High Ambient Pressure
,”
Exp. Therm. Fluid Sci.
,
126
, p.
110401
.10.1016/j.expthermflusci.2021.110401
31.
Tanoue
,
K.
,
Jimoto
,
T.
,
Kimura
,
T.
,
Yamamoto
,
M.
, and
Hashimoto
,
J.
,
2017
, “
Effect of Initial Temperature and Fuel Properties on Knock Characteristics in a Rapid Compression and Expansion Machine
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3523
3531
.10.1016/j.proci.2016.08.036
32.
Yamashita
,
R.
,
Waku
,
S.
,
Mori
,
D.
,
Ueno
,
S.
,
Tanoue
,
K.
, and
Moriyoshi
,
Y.
,
2021
, “
Effect of Fuel Property on the Ignition and Combustion Characteristics of Prechamber Ignition
,”
J. Therm. Sci. Technol.
,
16
(
2
), pp.
JTST0014
JTST0014
.10.1299/jtst.2021jtst0014
33.
Tanoue
,
K.
,
Kimura
,
T.
,
Jimoto
,
T.
,
Hashimoto
,
J.
, and
Moriyoshi
,
Y.
,
2017
, “
Study of Prechamber Combustion Characteristics in a Rapid Compression and Expansion Machine
,”
Appl Therm Eng
,
115
, pp.
64
71
.10.1016/j.applthermaleng.2016.12.079
34.
Matsura
,
T.
,
Ozawa
,
S.
,
Yamashita
,
R.
,
Mieno
,
T.
,
Shimada
,
F.
,
Tanoue
,
K.
, and
Moriyoshi
,
Y.
,
2021
, “
Study of the Effect of Fuel Property on Prechamber Ignition Combustion
,”
Trans. Soc. Automot. Eng. Jpn.
, 52(6), pp.
1173
1179
.10.11351/jsaeronbun.52.1173
35.
Antolini
,
J.
,
Sementa
,
P.
,
Tornatore
,
C.
,
Catapano
,
F.
,
Vaglieco
,
B. M.
,
Desantes
,
J. M.
, and
López
,
J. J.
,
2023
, “
Effect of Passive Pre-Chamber Orifice Diameter on the Methane Combustion Process in an Optically Accessible SI Engine
,”
Fuel
,
341
, p.
126990
.10.1016/j.fuel.2022.126990
36.
Chinnathambi
,
P.
,
Thelen
,
B.
,
Cook
,
D.
, and
Toulson
,
E.
,
2021
, “
Performance Metrics for Fueled and Unfueled Turbulent Jet Igniters in a Rapid Compression Machine
,”
Appl. Therm. Eng.
,
182
, p.
115893
.10.1016/j.applthermaleng.2020.115893
37.
Tian
,
J.
,
Cui
,
Z.
,
Ren
,
Z.
,
Tian
,
H.
, and
Long
,
W.
,
2020
, “
Experimental Study on Jet Ignition and Combustion Processes of Natural Gas
,”
Fuel
,
262
, p.
116467
.10.1016/j.fuel.2019.116467
38.
Silva
,
M.
,
Liu
,
X.
,
Hlaing
,
P.
,
Sanal
,
S.
,
Cenker
,
E.
,
Chang
,
J.
,
Johansson
,
B.
, and
Im
,
H. G.
,
2022
, “
Computational Assessment of Effects of Throat Diameter on Combustion and Turbulence Characteristics in a Pre-Chamber Engine
,”
Appl. Therm. Eng.
,
212
, p.
118595
.10.1016/j.applthermaleng.2022.118595
39.
Bardis
,
K.
,
Kyrtatos
,
P.
,
Barro
,
C.
,
Denisov
,
A.
,
Wright
,
Y. M.
,
Herrmann
,
K.
, and
Boulouchos
,
K.
,
2021
, “
A Novel One- and Zero-Dimensional Model for Turbulent Jet Ignition
,”
Flow, Turbul. Combust.
,
107
(
2
), pp.
307
342
.10.1007/s10494-020-00239-6
40.
Silva
,
M.
,
Sanal
,
S.
,
Hlaing
,
P.
,
Cenker
,
E.
,
Johansson
,
B.
, and
Im
,
H. G.
,
2020
, “
Effects of Geometry on Passive Pre-Chamber Combustion Characteristics
,”
SAE
Paper No. 2020-01-0821.10.4271/2020-01-0821
41.
Hlaing
,
P.
,
Echeverri Marquez
,
M.
,
Singh
,
E.
,
Almatrafi
,
F.
,
Cenker
,
E.
,
Ben Houidi
,
M.
, and
Johansson
,
B.
,
2020
, “
Effect of Pre-Chamber Enrichment on Lean Burn Pre-Chamber Spark Ignition Combustion Concept With a Narrow-Throat Geometry
,”
SAE
Paper No. 2020-01-0825.10.4271/2020-01-0825
42.
Hiraoka
,
K.
,
Nomura
,
K.
,
Yuuki
,
A.
,
Oda
,
Y.
, and
Kameyama
,
T.
,
2016
, “
Phenomenological 0-Dimensional Combustion Model for Spark-Ignition Natural Gas Engine Equipped With Pre-Chamber
,”
SAE
Paper No. 2016-01-0556.10.4271/2016-01-0556
You do not currently have access to this content.