Abstract

Building on the regularized-Lanczos harmonic balance method (RL-HBM), a previously developed frequency method, this paper presents a numerical bifurcation tracking strategy dedicated to high-dimensional nonlinear mechanical systems. In order to demonstrate its applicability to industrial applications, it is here used to obtain original results in the context of blade-tip/casing interactions in aircraft engines. The emphasis is put specifically on the tracking of predicted limit point (LP) bifurcations as key parameters—such as the amplitude of the aerodynamic forcing applied on the blade, the friction coefficient or the operating clearances—vary. Overall, presented results underline that the employed frequency method is well-suited to tackle the numerical challenges inherent to such computations on high-dimensional systems. For the mechanical system of interest, the industrial fan blade National Aeronautics and Space Administration (NASA) rotor 67, it is shown that the application of the presented strategy yields an efficient way to identify isolated branches of solutions, which may be of critical importance from a design standpoint.

References

1.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency-Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.10.1016/S0022-460X(02)01447-5
2.
Gola
,
M. M.
,
2023
, “
A General Geometrical Theory of Turbine Blade Underplatform Asymmetric Dampers
,”
Mech. Syst. Signal Process.
,
191
, p.
110167
.10.1016/j.ymssp.2023.110167
3.
Maroldt
,
N.
,
Schwerdt
,
L.
,
Berger
,
R.
,
Panning-von Scheidt
,
L.
,
Rolfes
,
R.
,
Wallaschek
,
J.
, and
Seume
,
J. R.
,
2022
, “
Reduced Order Modeling of Forced Response in a Multistage Compressor Under Mistuning and Aerocoupling
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111017
.10.1115/1.4055368
4.
Kim
,
Y. B.
,
Noah
,
S. T.
, and
Choi
,
Y. S.
,
1991
, “
Periodic Response of Multi-Disk Rotors With Bearing Clearances
,”
J. Sound Vib.
,
144
(
3
), pp.
381
395
.10.1016/0022-460X(91)90558-2
5.
Jiang
,
J.
,
2007
, “
The Analytical Solution and the Existence Condition of Dry Friction Backward Whirl in Rotor-to-Stator Contact Systems
,”
ASME J. Vib. Acoust.
,
129
(
2
), pp.
260
264
.10.1115/1.2345677
6.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
,” NASA Lewis Research Center, Cleveland, OH, accessed Sept. 2022, https://ntrs.nasa.gov/citations/19900001929
7.
Padova
,
C.
,
Barton
,
J.
,
Dunn
,
M.
, and
Manwaring
,
S.
,
2006
, “
Experimental Results From Controlled Blade Tip/Shroud Rubs at Engine Speed
,”
ASME J. Turbomach.
,
129
(
4
), pp.
713
723
.10.1115/GT2006-90049
8.
Doi
,
H.
, and
Alonso
,
J. J.
,
2002
, “
Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery
,”
ASME
Paper No. GT2002-30313. 10.1115/GT2002-30313
9.
Petrov
,
E. P.
, “
Multiharmonic Analysis of Nonlinear Whole Engine Dynamics With Bladed Disc-Casing Rubbing Contacts
,”
ASME
Paper No. GT2012-68474. 10.1115/GT2012-68474
10.
Almeida
,
P.
,
Gibert
,
C.
,
Thouverez
,
F.
,
Leblanc
,
X.
, and
Ousty
,
J.-P.
,
2015
, “
Experimental Analysis of Dynamic Interaction Between a Centrifugal Compressor and Its Casing
,”
ASME J. Turbomach.
,
137
(
3
), p.
031008
.10.1115/1.4028328
11.
Ma
,
H.
,
Yin
,
F.
,
Guo
,
Y.
,
Tai
,
X.
, and
Wen
,
B.
,
2016
, “
A Review on Dynamic Characteristics of Blade–Casing Rubbing
,”
Nonlinear Dyn.
,
84
(
2
), pp.
437
472
.10.1007/s11071-015-2535-x
12.
Batailly
,
A.
,
Agrapart
,
Q.
,
Millecamps
,
A.
, and
Brunel
,
J.-F.
,
2016
, “
Experimental and Numerical Simulation of a Rotor/Stator Interaction Event Localized on a Single Blade Within an Industrial High-Pressure Compressor
,”
J. Sound Vib.
,
375
, pp.
308
331
.10.1016/j.jsv.2016.03.016
13.
Nyssen
,
F.
, and
Batailly
,
A.
,
2017
, “
Investigations on Thermo-Mechanical Modeling of Abradable Coating in the Context of Rotor/Stator Interactions
,”
ISROMAC - 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Maui, HI, Dec.
16
21
.https://hal.science/hal-02136824/document
14.
Agrapart
,
Q.
,
Nyssen
,
F.
,
Lavazec
,
D.
,
Dufrenoy
,
P.
, and
Batailly
,
A.
,
2019
, “
Multi-Physics Numerical Simulation of an Experimentally Predicted Rubbing Event in Aircraft Engines
,”
J. Sound Vib.
,
460
, p.
114869
.10.1016/j.jsv.2019.114869
15.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2021
, “
The Harmonic Balance Method With Arc-Length Continuation in Blade-Tip/Casing Contact Problems
,”
J. Sound Vib.
,
502
, p.
116070
.10.1016/j.jsv.2021.116070
16.
Vadcard
,
T.
,
Colaïtis
,
Y.
,
Batailly
,
A.
, and
Thouverez
,
F.
,
2022
, “
Assessment of Two Harmonic Balance Method-Based Numerical Strategies for Blade-Tip/Casing Interactions: Application to NASA Rotor 67
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121004
.10.1115/1.4055416
17.
Vadcard
,
T.
,
Thouverez
,
F.
, and
Batailly
,
A.
,
2023
, “
Computation of Isolated Periodic Solutions for Forced Response Blade-Tip/Casing Contact Problems
,”
ASME J. Eng. Gas Turbines Power
, 146(4), p.
041011
.10.1115/1.4063704
18.
Rahimov
,
E.
,
Watson
,
M.
,
Hadjisoteriou
,
A.
, and
Marshall
,
M.
,
2022
, “
Investigation of Wear Mechanisms in AlSi-Polyester abradable - Ti(6Al4V) Blade Contacts Using Stroboscopic Imaging
,”
Wear
,
494–495
, p.
204207
.10.1016/j.wear.2021.204207
19.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2022
, “
Stability Analysis of Periodic Solutions Computed for Blade-Tip/Casing Contact Problems
,”
J. Sound Vib.
,
538
, p.
117219
.10.1016/j.jsv.2022.117219
20.
Keller
,
H. B.
,
1987
,
Numerical Methods in Bifurcation Problems (Lectures on Mathematics and Physics)
,
Tata Institute of Fundamental Research
,
Mumbai, India
.
21.
Petrov
,
E. P.
,
2016
, “
Analysis of Bifurcations in Multiharmonic Analysis of Nonlinear Forced Vibrations of Gas Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102502
.10.1115/1.4032906
22.
Xie
,
L.
,
Baguet
,
S.
,
Prabel
,
B.
, and
Dufour
,
R.
,
2016
, “
Numerical Tracking of Limit Points for Direct Parametric Analysis in Nonlinear Rotordynamics
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021007
.10.1115/1.4032182
23.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
The Harmonic Balance Method for Bifurcation Analysis of Large-Scale Nonlinear Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
296
, pp.
18
38
.10.1016/j.cma.2015.07.017
24.
Alcorta
,
R.
,
Baguet
,
S.
,
Prabel
,
B.
,
Piteau
,
P.
, and
Jacquet-Richardet
,
G.
,
2019
, “
Period Doubling Bifurcation Analysis and Isolated Sub-Harmonic Resonances in an Oscillator With Asymmetric Clearances
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2939
2960
.10.1007/s11071-019-05245-6
25.
Xie
,
L.
,
Baguet
,
S.
,
Prabel
,
B.
, and
Dufour
,
R.
,
2017
, “
Bifurcation Tracking by Harmonic Balance Method for Performance Tuning of Nonlinear Dynamical Systems
,”
Mech. Syst. Signal Process.
,
88
, pp.
445
461
.10.1016/j.ymssp.2016.09.037
26.
von Groll
,
G.
, and
Ewins
,
D.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.10.1006/jsvi.2000.3298
27.
Sarrouy
,
E.
, and
Sinou
,
J.-J.
,
2011
, “
Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems - On the Use of the Harmonic Balance Methods
,”
Advances in Vibration Analysis Research
,
F.
Ebrahimi
, ed.,
InTechOpen
,
Rijeka
, Croatia, pp.
419
434
.
28.
Urabe
,
M.
,
1965
, “
Galerkin's Procedure for Nonlinear Periodic Systems
,”
Arch. Ration. Mech. Anal.
,
20
(
2
), pp.
120
152
.10.1007/BF00284614
29.
Narayanan
,
S.
, and
Sekar
,
P.
,
1998
, “
A Frequency Domain Based Numeric-Analytical Method Non-Linear Dynamical Systems
,”
J. Sound Vib.
,
211
(
3
), pp.
409
424
.10.1006/jsvi.1997.1319
30.
Cooley
,
J. W.
, and
Tukey
,
J. W.
,
1965
, “
An Algorithm for the Machine Calculation of Complex Fourier Series
,”
Math. Comput.
,
19
(
90
), pp.
297
301
.10.1090/S0025-5718-1965-0178586-1
31.
Urasek
,
D. C.
,
Gorrell
,
W. T.
, and
Cunnan
,
W. S.
,
1979
, “
Performance of Two-Stage Fan Having Low-Aspect-Ratio First-Stage Rotor Blading
,” NASA Lewis Research Center, Cleveland, OH, accessed Sept. 2022, https://ntrs.nasa.gov/citations/19790018972
32.
Laity
,
D.
,
1903
, “
Stage 67 Rotor and Stage 67 Casing Half Stators Mounted
,” accessed Sept. 2022, https://catalog.archives.gov/id/17500556
33.
Kojtych
,
S.
, and
Batailly
,
A.
,
2023
, “
A Catalogue of Open NASA Blade Models
,” accessed Apr. 6, 2023, https://hal.science/hal-03945336
34.
Craig
,
R. R.
, Jr.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
35.
Batailly
,
A.
,
Legrand
,
M.
,
Cartraud
,
P.
, and
Pierre
,
C.
,
2010
, “
Assessment of Reduced Models for the Detection of Modal Interaction Through Rotor Stator Contacts
,”
J. Sound Vib.
,
329
(
26
), pp.
5546
5562
.10.1016/j.jsv.2010.07.018
You do not currently have access to this content.