Abstract

The evolution of in-cylinder flow involves large- and small-scale structures during the intake and compression strokes, significantly influencing the fuel–air mixing and combustion processes. Extensive research has been conducted to investigate the flow evolution in medium- to large-sized engines using laser-based diagnostic methods, computational fluid dynamics (CFD) simulations, and zero-dimensional (0D) based modeling. In the present study, we provide a detailed analysis of the evolution of flow fields in a small-bore spark ignition (SI) engine with a displacement volume of 110 cm3. This analysis employs a unique methodology, where CFD simulation is performed and validated using measured particle image velocimetry (PIV) data. Subsequently, the validated CFD results are utilized to develop and validate a 0D-based model as it is computationally more efficient. The validated CFD simulation and 0D-based model are then used to evaluate the quantified strength of the flow by calculating the tumble ratio and turbulent kinetic energy (TKE). The streamlines and velocity vectors of the flow fields obtained from CFD simulations are utilized to explain the evolution of these parameters during intake and compression strokes. The study is further extended to analyze the effect of engine speed on the evolution of flow fields. With an increase in engine speed, relatively higher values of tumble ratio and TKE at the end of the compression stroke are observed, which is expected to improve the fuel–air mixing and combustion efficiency.

References

1.
Dulbecco
,
A.
,
Richard
,
S.
,
Laget
,
O.
, and
Aubret
,
P.
,
2016
, “
Development of a Quasi-Dimensional K-k Turbulence Model for Direct Injection Spark Ignition (DISI) Engines Based on the Formal Reduction of a 3D CFD Approach
,”
SAE
Paper No. 2016-01-2229.10.4271/2016-01-2229
2.
Lucchini
,
T.
,
D'Errico
,
G.
, and
Fiocco
,
M.
,
2011
, “
Multi-Dimensional Modeling of Gas Exchange and Fuel-Air Mixing Processes in a Direct-Injection, Gas Fueled Engine
,”
SAE
Paper No. 2011-24-0036.10.4271/2011-24-0036
3.
Furuno
,
S.
,
Iguchi
,
S.
,
Oishi
,
K.
, and
Inoue
,
T.
,
1990
, “
The Effects of ‘Inclination Angle of Swirl Axis’ on Turbulence Characteristics in a 4-Valve Lean-Burn Engine With SCV
,”
SAE
Paper No. 902139.10.4271/902139
4.
Floch
,
A.
,
Van Frank
,
J.
, and
Ahmed
,
A.
,
1995
, “
Comparison of the Effects of Intake-Generated Swirl and Tumble on Turbulence Characteristics in a 4-Valve Engine
,”
SAE
Paper No. 952457.10.4271/952457
5.
Luo
,
X.
,
Teng
,
H.
,
Lin
,
Y.
,
Li
,
B.
,
Zeng
,
X.
,
Hu
,
T.
,
Huang
,
X.
, and
Yuan
,
X.
,
2017
, “
A Comparative Study on Influence of EIVC and LIVC on Fuel Economy of a TGDI Engine Part II: Influences of Intake Event and Intake Valve Closing Timing on the Cylinder Charge Motion
,”
SAE
Paper No. 2017-01-2232.10.4271/2017-01-2232
6.
Braun
,
M.
,
Klaas
,
M.
, and
Schröder
,
W.
,
2018
, “
Influence of Miller Cycles on Engine Air Flow
,”
SAE Int. J. Engines
,
11
(
2
), pp.
161
178
.10.4271/03-11-02-0011
7.
Ramesh
,
P.
, and
James Gunasekaran
,
E.
,
2013
, “
Investigation of Flow Field Pattern in a GDI Engine at Different Speeds Using Numerical Techniques
,”
SAE
Paper No. 2013-01-2791.10.4271/2013-01-2791
8.
Toh
,
H. T.
,
Huang
,
R. F.
,
Lin
,
K. H.
, and
Chern
,
M.-J.
,
2011
, “
Computational Study on the Effect of Inlet Port Configuration on in-Cylinder Flow of a Motored Four-Valve Internal Combustion Engine
,”
J. Energy Eng.
,
137
(
4
), pp.
198
206
.10.1061/(ASCE)EY.1943-7897.0000044
9.
Yang
,
J.
,
Dong
,
X.
,
Wu
,
Q.
, and
Xu
,
M.
,
2019
, “
Effects of Enhanced Tumble Ratios on the in-Cylinder Performance of a Gasoline Direct Injection Optical Engine
,”
Appl. Energy
,
236
, pp.
137
146
.10.1016/j.apenergy.2018.11.059
10.
Pandey
,
A.
, and
Venkataraman
,
C.
,
2014
, “
Estimating Emissions From the Indian Transport Sector With on-Road Fleet Composition and Traffic Volume
,”
Atmos. Environ.
,
98
, pp.
123
133
.10.1016/j.atmosenv.2014.08.039
11.
Huang
,
R. F.
,
Huang
,
C. W.
,
Chang
,
S. B.
,
Yang
,
H. S.
,
Lin
,
T. W.
, and
Hsu
,
W. Y.
,
2005
, “
Topological Flow Evolutions in Cylinder of a Motored Engine During Intake and Compression Strokes
,”
J. Fluids Struct.
,
20
(
1
), pp.
105
127
.10.1016/j.jfluidstructs.2004.09.002
12.
Shinde
,
G.
,
Mittal
,
M.
, and
Lakshminarasimhan
,
V.
,
2018
, “
A Study of Cycle-to-Cycle Flow Variations in a Small Spark-Ignition Engine at Low Throttle Opening
,”
SAE
Paper No. 2018-32-0035.10.4271/2018-32-0035
13.
Alam
,
A.
,
Mittal
,
M.
, and
Lakshminarasimhan
,
V.
,
2020
, “
Analysis of in-Cylinder Flow and Cycle-to-Cycle Flow Variations in a Small Spark-Ignition Engine at Different Throttle Openings
,”
SAE
Paper No. 2020-01-0793.10.4271/2020-01-0793
14.
Bicen
,
A. F.
,
Vafidis
,
C.
, and
Whitelaw
,
J. H.
,
1986
, “
Steady and Unsteady Air Flow Through an Intake Valve of a Reciprocating Engine
,”
ASME J. Fluids Eng.,
107
(
3
), pp.
413
420
.10.1115/1.3242502
15.
Arcoumanis
,
C.
,
Gold
,
M. R.
,
Whitelaw
,
J. H.
,
Xu
,
H. M.
,
Gaade
,
J. E.
, and
Wallace
,
S.
,
1998
, “
Droplet Velocity/Size and Mixture Distribution in a Single-Cylinder Four-Valve Spark-Ignition Engine
,”
SAE
Paper No. 981186.10.4271/981186
16.
Bohl
,
D. G.
,
Koochesfahani
,
M. M.
, and
Olson
,
B. J.
,
2001
, “
Development of Stereoscopic Molecular Tagging Velocimetry
,”
Exp. Fluids
,
30
(
3
), pp.
302
308
.10.1007/s003480000178
17.
Mittal
,
M.
,
Sadr
,
R.
,
Schock
,
H. J.
,
Fedewa
,
A.
, and
Naqwi
,
A.
,
2009
, “
In-Cylinder Engine Flow Measurement Using Stereoscopic Molecular Tagging Velocimetry (SMTV)
,”
Exp. Fluids
,
46
(
2
), pp.
277
284
.10.1007/s00348-008-0557-6
18.
Yang
,
X.
,
Gupta
,
S.
,
Kuo
,
T. W.
, and
Gopalakrishnan
,
V.
,
2014
, “
RANS and Large Eddy Simulation of Internal Combustion Engine Flows-A Comparative Study
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), pp.
1
9
.10.1115/1.4026165
19.
Hou
,
Q.
, and
Zou
,
Z.
,
2005
, “
Comparison Between Standard and Renormalization Group K-ε Models in Numerical Simulation of Swirling Flow Tundish
,”
ISIJ Int.
,
45
(
3
), pp.
325
330
.10.2355/isijinternational.45.325
20.
Thet
,
M. S.
, and
San
,
Y. K.
,
2017
, “
Comparison of Turbulence Models for Computational Fluid Dynamics Simulation of Wind Flow on Cluster of Buildings in Mandalay
,”
Int. J. Sci. Res. Publ.
,
7
(
8
), pp.
337
350
.https://www.ijsrp.org/research-paper-0817.php?rp=P686711
21.
Shafie
,
N. A. M.
, and
Said
,
M. F. M.
,
2017
, “
Cold Flow Analysis on Internal Combustion Engine With Different Piston Bowl Configurations
,”
J. Eng. Sci. Technol.
,
12
(
4
), pp.
1048
1066
.https://jestec.taylors.edu.my/Vol%2012%20issue%204%20April%202017/12_4_14.pdf
22.
Sankesh
,
D.
, and
Lappas
,
P.
,
2020
, “
An Experimental and Numerical Study of Natural Gas Jets for Direct Injection Internal Combustion Engines
,”
Fuel
,
263
, p.
116745
.10.1016/j.fuel.2019.116745
23.
Faingold
,
G.
,
Tartakovsky
,
L.
, and
Frankel
,
S. H.
,
2018
, “
Numerical Study of a Direct Injection Internal Combustion Engine Burning a Blend of Hydrogen and Dimethyl Ether
,”
Drones
,
2
(
3
), pp.
23
12
.10.3390/drones2030023
24.
Wang
,
T.
,
Li
,
W.
,
Jia
,
M.
,
Liu
,
D.
,
Qin
,
W.
, and
Zhang
,
X.
,
2015
, “
Large-Eddy Simulation of in-Cylinder Flow in a DISI Engine With Charge Motion Control Valve: Proper Orthogonal Decomposition Analysis and Cyclic Variation
,”
Appl. Therm. Eng.
,
75
, pp.
561
574
.10.1016/j.applthermaleng.2014.10.081
25.
Fogla
,
N.
,
Bybee
,
M.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Wahiduzzaman
,
S.
,
2017
, “
Development of a K-k-ɛ Phenomenological Model to Predict in-Cylinder Turbulence
,”
SAE Int. J. Engines
,
10
(
2
), pp.
562
575
.10.4271/2017-01-0542
26.
Amsden
,
A.
,
O'Rourke
,
P.
, and
Butler
,
T.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,”
Los Alamos - National Laboratory
, Los Alamos, NM, Report No.
LA-11560-MS
.https://www.osti.gov/biblio/6228444
27.
Lewandowski
,
M. T.
,
Netzer
,
C.
,
Emberson
,
D. R.
, and
Løvås
,
T.
,
2020
, “
Numerical Investigation of Optimal Flow Conditions in an Optically Accessed Compression Ignition Engine
,”
Transp. Eng.
,
2
, p.
100036
.10.1016/j.treng.2020.100036
28.
Wilcox
,
D. C.
,
1993
,
Turbulence Modelling for CFD
, 3rd ed., DCW Industries, La Canada, CA.
29.
Stansfield
,
P.
,
Wigley
,
G.
,
Justham
,
T.
,
Catto
,
J.
, and
Pitcher
,
G.
,
2007
, “
PIV Analysis of in-Cylinder Flow Structures Over a Range of Realistic Engine Speeds
,”
Exp. Fluids
,
43
(
1
), pp.
135
146
.10.1007/s00348-007-0335-x
30.
Shen
,
L.
,
Willman
,
C.
,
Stone
,
R.
,
Lockyer
,
T.
,
Magnanon
,
R.
, and
Virelli
,
G.
,
2022
, “
On the Use of Particle Image Velocimetry (PIV) Data for the Validation of Reynolds Averaged Navier-Stokes (RANS) Simulations During the Intake Process of a Spark Ignition Direct Injection (SIDI) Engine
,”
Int. J. Engine Res.
,
23
(
6
), pp.
1061
1081
.10.1177/14680874211001257
31.
Sciacchitano
,
A.
,
2019
, “
Uncertainty Quantification in Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
30
(
9
), p.
092001
.10.1088/1361-6501/ab1db8
32.
da Costa
,
R. B. R.
,
Braga
,
R. M.
,
Gomes Júnior
,
C. A.
,
Valle
,
R. M.
, and
Huebner
,
R.
,
2017
, “
PIV Measurements and Numerical Analysis of in-Cylinder Tumble Flow in a Motored Engine
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
10
), pp.
3931
3945
.10.1007/s40430-017-0878-6
33.
Willman
,
C.
,
Scott
,
B.
,
Stone
,
R.
, and
Richardson
,
D.
,
2020
, “
Quantitative Metrics for Comparison of in - Cylinder Velocity Fields Using Particle Image Velocimetry
,”
Exp. Fluids
,
61
(
2
), pp.
1
16
.10.1007/s00348-020-2897-9
34.
Sherman
,
R. H.
, and
Blumberg
,
P. N.
,
1977
, “
The Influence of Induction and Exhaust Processes on Emissions and Fuel Consumption in the Spark Ignited Engine
,”
SAE
Paper No. 770880.10.4271/770880
35.
Nayek
,
S.
,
Velugula
,
R.
, and
Mittal
,
M.
,
2023
, “
Analysis of in-Cylinder Flow Fields Using Proper Orthogonal Decomposition-Based Quadruple Decomposition
,”
J. Flow Visualization Image Process.
,
30
(
3
), pp.
57
93
.10.1615/JFlowVisImageProc.2022044063
36.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals/John B. Heywood
, McGraw-Hill, New York.
37.
Bozza
,
F.
,
Teodosio
,
L.
,
De Bellis
,
V.
,
Fontanesi
,
S.
, and
Iorio
,
A.
,
2018
, “
Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part II: Model Concept, Validation and Discussion
,”
SAE
Paper No. 2018-01-0856.10.4271/2018-01-0856
38.
Wahono
,
B.
,
Putrasari
,
Y.
, and
Lim
,
O.
,
2019
, “
A Study on in-Cylinder Flow Field of a 125 cc Motorcycle Engine at Low Engine Speeds
,”
J. Mech. Sci. Technol.
,
33
(
9
), pp.
4477
4494
.10.1007/s12206-019-0844-6
39.
Achuth
,
M.
, and
Mehta
,
P. S.
,
2001
, “
Predictions of Tumble and Turbulence in Four-Valve Pentroof Spark Ignition Engines
,”
Int. J. Engine Res.
,
2
(
3
), pp.
209
227
.10.1243/1468087011545442
40.
Addepalli
,
S. K.
, and
Mallikarjuna
,
J. M.
,
2018
, “
Parametric Analysis of a 4-Stroke GDI Engine Using CFD
,”
Alexandria Eng. J.
,
57
(
1
), pp.
23
34
.10.1016/j.aej.2016.10.007
41.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
42.
Gadekar
,
S.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2016
, “
Tomographic PIV Evaluation of in-Cylinder Flow Evolution and Effect of Engine Speed
,”
SAE
Paper No. 2016-01-0638.10.4271/2016-01-0638
You do not currently have access to this content.