Abstract

This is the first study where a single variable sweep of SN is conducted to assess its impact on lean blowout limits (LBO) in a liquid-fueled lean direct injection (LDI) combustor. This study uses a scaled NASA SV-LDI (Swirl Venturi—Lean Direct Injection) hardware and is concerned with the impact of swirl number on the lean blow-out limit of a single-element LDI system at atmospheric pressure. The swirl numbers (SN) were varied from 0.31 to 0.66 using continuously variable active swirl number control system that was developed in-house. It is shown that the minimum operating equivalence ratio is a linearly increasing function of swirl number. While previous literature agrees with the positive slope for this correlation, past work has suggested that the LBO limit is proportional to the swirler vane angle which is shown to be untrue for LDI systems. By actively varying the swirl number, it is proven that LBO is proportional to SN, and it is well known that SN is not proportional to swirler vane angle. Increased SN reduces LBO margin because the better-mixed, high swirl dilutes locally rich pockets of fuel–air mixture in a globally lean flow. In addition to a baseline venturi, which was scaled from NASA's geometry, two other venturis were tested. A low-pressure loss venturi with a large throat diameter showed poor blow-out performance whereas a parabolically profiled venturi improved LBO over the baseline for the same swirl number.

References

1.
Hicks
,
Y. R.
,
Anderson
,
R. C.
,
Tedder
,
S. A.
, and
Tacina
,
K. M.
,
2015
, “
Investigations of Multiple Swirl-Venturi Fuel Injector Concepts: Recent Experimental Optical Measurement Results for 1-Point, 7-Point, and 9-Point Configurations
,”
22nd International Symposium on Air Breathing Engines
, Phoenix, AZ, Oct. 25–30, Paper No. ISABE-2015-20230.https://ntrs.nasa.gov/citations/20150022175
2.
Tacina
,
K.
,
Podboy
,
D.
,
Dam
,
B.
, and
Lee
,
F.
,
2019
, “
A Third-Generation Swirl-Venturi Lean Direct Injection Combustor With a Prefilming Pilot Injector
,”
ASME
Paper No. GT2019-90484.10.1115/GT2019-90484
3.
Tacina
,
K. M.
,
2018
, “
Swirl-Venturi Lean Direct Injection Combustion Technology for Low-NOx Aero Gas Turbine Engines
,”
Spring Technical Meeting of the Central States Section of the Combustion Institute
,
Minneapolis, MN
, May 20–22, Paper No. NASA - GRC-E-DAA-TN55621.https://ntrs.nasa.gov/api/citations/20180004690/downloads/20180004690.pdf
4.
Tacina
,
K. M.
,
Chang
,
C.
,
He
,
Z. J.
,
Lee
,
P.
,
Mongia
,
H. C.
, and
Dam
,
B. K.
,
2014
, “
A Second Generation Swirl-Venturi Lean Direct Injection Combustion Concept
,”
AIAA
Paper No. 2014-3434.10.2514/6.2014-3434
5.
Tacina
,
K. M.
,
Lee
,
P.
,
Mongia
,
H.
,
Dam
,
B. K.
,
He
,
Z. J.
, and
Podboy
,
D. P.
,
2016
, “
A Comparison of Three Second-Generation Swirl-Venturi Lean Direct Injection Combustor Concepts
,”
AIAA
Paper No. 2016-4891.10.2514/6.2016-4891
6.
Tacina
,
R.
,
Wey
,
C.
,
Laing
,
P.
, and
Mansour
,
A.
,
2002
, “
A Low No (x) Lean-Direct Injection, Multipoint Integrated Module Combuster Concept for Advanced Aircraft Gas Turbines
,”
Conference on Technologies and Combustion for a Clean Environment
, Oporto, Portugal, July 9–12, Paper No. NASA/TM-2002-211347.https://ntrs.nasa.gov/citations/20020061947
7.
Tedder
,
S. A.
,
Tacina
,
K. M.
,
Anderson
,
R. C.
, and
Hicks
,
Y. R.
,
2014
, “
Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics
,”
AIAA
Paper No. 2014-3435.10.2514/6.2014-3435
8.
Lefebvre
,
A. H.
, and Ballal, D. R., 2010,
Gas Turbine Combustion: Alternative Fuels and Emissions
, CRC Press, Boca Raton, FL.
9.
Feikema
,
D.
,
Chen
,
R.-H.
, and
Driscoll
,
J. F.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
80
(
2
), pp.
183
195
.
10.
Feikema
,
D.
,
Chen
,
R.
, and
Driscoll
,
J.
,
1991
, “
Blowout of Nonpremixed Flames: Maximum Coaxial Air Velocities Achievable, With and Without Swirl
,”
86
(
4
), pp.
347
358
.
11.
Fricker
,
N.
, and
Leuckel
,
W.
,
1976
, “
Characteristics of Swirl-Stabilized Natural Gas Flames. III. Effect of Swirl and Burner Mouth Geometry on Flame Stability
,”
J. Inst. Fuel
,
49
(
400
), pp.
152
158
.https://www.osti.gov/etdeweb/biblio/7320581
12.
Dewanji
,
D.
, Rao, A. G., Pourquie, M. J. B. M., and Van Buijtenen, J. P.,
2012
, “
Investigation of Flow Characteristics in Lean Direct Injection Combustors
,”
J. Propul. Power
, 28(1), pp.
181
196
.10.2514/1.B34264
13.
Rock
,
N.
,
Emerson
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2020
, “
Near-Lean Blowoff Dynamics in a Liquid Fueled Combustor
,”
Combust. Flame
,
212
, pp.
53
66
.10.1016/j.combustflame.2019.10.010
14.
Morales
,
A. J.
,
Lasky
,
I. M.
,
Geikie
,
M. K.
,
Engelmann
,
C. A.
, and
Ahmed
,
K. A.
,
2019
, “
Mechanisms of Flame Extinction and Lean Blowout of Bluff Body Stabilized Flames
,”
Combust. Flame
,
203
, pp.
31
45
.10.1016/j.combustflame.2019.02.002
15.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Arndt
,
C. M.
,
Frank
,
J. H.
, and
Meier
,
W.
,
2011
, “
Experimental Study of Flame-Hole Reignition Mechanisms in a Turbulent Non-Premixed Jet Flame Using Sustained Multi-kHz PIV and Crossed-Plane OH PLIF
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1663
1672
.10.1016/j.proci.2010.06.134
16.
Pathania
,
R. S.
,
Skiba
,
A. W.
,
Sidey-Gibbons
,
J. A. M.
, and
Mastorakos
,
E.
,
2021
, “
Lean Blow-Off Scaling of Turbulent Premixed Bluff-Body Flames of Vaporized Liquid Fuels
,”
J. Propul. Power
, 37(3), pp.
479
486
.10.2514/1.B38133
17.
Vignat
,
G.
,
Minesi
,
N.
,
Soundararajan
,
P. R.
,
Durox
,
D.
,
Renaud
,
A.
,
Blanchard
,
V.
,
Laux
,
C. O.
, and
Candel
,
S.
,
2021
, “
Improvement of Lean Blow Out Performance of Spray and Premixed Swirled Flames Using Nanosecond Repetitively Pulsed Discharges
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6559
6566
.10.1016/j.proci.2020.06.136
18.
Nassini
,
P. C.
,
Pampaloni
,
D.
,
Meloni
,
R.
, and
Andreini
,
A.
,
2021
, “
Lean Blow-Out Prediction in an Industrial Gas Turbine Combustor Through a LES-Based CFD Analysis
,”
Combust. Flame
,
229
, p.
111391
.10.1016/j.combustflame.2021.02.037
19.
Esclapez
,
L.
,
Ma
,
P. C.
,
Mayhew
,
E.
,
Xu
,
R.
,
Stouffer
,
S.
,
Lee
,
T.
,
Wang
,
H.
, and
Ihme
,
M.
,
2017
, “
Fuel Effects on Lean Blow-Out in a Realistic Gas Turbine Combustor
,”
Combust. Flame
,
181
, pp.
82
99
.10.1016/j.combustflame.2017.02.035
20.
Carreres
,
M.
,
García-Tíscar
,
J.
,
Belmar-Gil
,
M.
, and
Cervelló-Sanz
,
D. J. A. S.
,
2022
, “
Influence of Key Geometrical Features on the Non-Reacting Flow of a Lean Direct Injection (LDI) Combustor Through Large-Eddy Simulation and a Design of Experiments
,”
Aerosp. Sci. Technol.
,
126
, p.
107634
.10.1016/j.ast.2022.107634
21.
Alkabie
,
H. S.
,
Andrews
,
G. E.
, and
Ahmad
,
N. T.
,
2015
, “
Lean Low NOx Primary Zones Using Radial Swirlers
,”
ASME
Paper No. 88-GT-245.10.1115/88-GT-245
22.
Faeth
,
G. M.
,
1996
, “
Spray Combustion Phenomena
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
1593
1612
.10.1016/S0082-0784(96)80383-3
23.
Prociw
,
A.
,
Ryon
,
J.
, and
Goeke
,
J.
,
2012
, “
Low NOx Combustion Concepts in Support of the NASA Environmentally Responsible Aircraft Program
,”
ASME
Paper No. GT2012-68426.10.1115/GT2012-68426
24.
Ateshkadi
,
A.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
,
2000
, “
Lean Blowout Model for a Spray-Fired Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
1281
1288
.10.1016/S0082-0784(00)80341-0
25.
Beer
,
J. Μ.
, and
Chigier
,
N. A.
,
1972
,
Combustion Aerodynamics
,
Applied Science
,
London, UK
.
You do not currently have access to this content.