Abstract

Ultramicrogas turbines (UMGTs) for electric power generation up to 1 kW are a viable replacement technology for lithium batteries in drones due to their high energy density. Previous research has shown that small-scale effects disqualify conceptual design practices applied to larger gas turbines owing to highly coupled, nonlinear component interactions. To fill this gap, we propose an interdisciplinary conceptual design and analysis framework based on reduced order models. To this end, the current work is divided into two parts covering component design and system integration, analysis, and optimization. In Part I, automated conceptual design of all engine subcomponents is elaborated facilitating interdependent reduced order models for compressor, turbine, combustor and high-speed generator while also considering additive manufacturing constraints. In a second step, the reduced order performance models are compared to computational fluid dynamics (CFD) Reynolds-averaged-Navier–Stokes (RANS) simulations of various turbomachinery geometries as well as experimental data of combustor and high-speed generator prototypes, showing good agreement and thus validating the component modules. In conclusion, the first part of this work elaborates an automated and efficient method to conceptual design of all components required for a functional UMGT. Since the strategy is applicable independent of component arrangement and engine layout, the proposed methods offer a universal framework for small gas turbine generators.

References

1.
Epstein
,
A. H.
,
2004
, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
205
226
.10.1115/1.1739245
2.
Mehra
,
A.
,
1997
, “
Computational Investigation and Design of Low Reynolds Number Micro-Turbomachinery
,”
Master thesis
,
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
,
Cambridge, MA
.http://hdl.handle.net/1721.1/10516
3.
Gong
,
Y.
,
Sirakov
,
B. T.
,
Epstein
,
A. H.
, and
Tan
,
C. S.
, “
Aerothermodynamics of Micro-Turbomachinery
,”
ASME
Paper No. GT2004-53877.10.1115/GT2004-53877
4.
Fréchette
,
L. G.
,
Jacobson
,
S. A.
,
Breuer
,
K. S.
,
Ehrich
,
F.
,
Ghodssi
,
R.
,
Khanna
,
R.
,
Wong
,
C. W.
,
Zhang
,
X.
,
Schmidt
,
A.
, and
Epstein
,
A. H.
,
2000
, “
Demonstration of a Microfabricated High-Speed Turbine Supported on Gas Bearings
,” Research Report of the Gas Turbine Laboratory and Microsystems Technology Laboratories,
Massachusetts Institute of Technology
, Report No.
0704-0188
.https://www.researchgate.net/publication/245861887_DEMONSTRATION_OF_A_MICROFABRICATED_HIGH-SPEED_TURBINE_SUPPORTED_ON_GAS_BEARINGS
5.
Ishihama
,
M.
,
Sakai
,
Y.
,
Matsuzuki
,
K.
, and
Hikone
,
T.
,
2003
, “
Structural Analysis of Rotating Parts of an Ultra Micro Gas Turbine
,”
Proceedings of the International Gas Turbine Congress
, Tokyo, Japan, Nov. 2–7, pp.
1
4
.
6.
Epstein
,
A. H.
,
Jacobson
,
S. A.
,
Protz
,
J. M.
, and
Frechette
,
L. G.
,
2000
, “
Shirtbutton-Sized Gas Turbines: The Engineering Challenges of Micro High Speed Rotating Machinery
,”
Proceedings of the 8th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, Mar. 26–30, pp.
26
30
.https://web.mit.edu/aeroastro/sites/waitz/publications/Epstein_ISROMAC.pdf
7.
Badum
,
L.
,
Leizeronok
,
B.
, and
Cukurel
,
B.
,
2021
, “
New Insights From Conceptual Design of an Additive Manufactured 300 W Micro Gas Turbine Towards UAV Applications
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021006
.10.1115/1.4048695
8.
Lake
,
T.
,
Stokes
,
J.
,
Murphy
,
R.
,
Osborne
,
R.
, and
Schamel
,
A.
,
2004
, “
Turbocharging Concepts for Downsized DI Gasoline Engines
,”
SAE
Paper No. 2004-01-0036.10.4271/2004-01-0036
9.
Tanaka
,
S.
,
Isomura
,
K.
,
Togo
,
S. I.
, and
Esashi
,
M.
,
2004
, “
Turbo Test Rig With Hydroinertia Air Bearings for a Palmtop Gas Turbine
,”
J. Micromech. Microeng.
,
14
(
11
), pp.
1449
1454
.10.1088/0960-1317/14/11/003
10.
Dessornes
,
O.
,
Landais
,
S.
,
Valle
,
R.
,
Fourmaux
,
A.
,
Burguburu
,
S.
,
Zwyssig
,
C.
, and
Kozanecki
,
Z.
,
2014
, “
Advances in the Development of a Microturbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
7
), p.
071201
.10.1115/1.4026541
11.
Casey
,
M. V.
, and
Robinson
,
C.
,
2013
, “
A Method to Estimate the Performance Map of a Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
135
(
2
), p.
21034
.10.1115/1.4006590
12.
Casey
,
M. V.
, and
Robinson
,
C.
,
2021
,
Radial Flow Turbocompressors
,
Cambridge University Press
,
New York
.
13.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors
,
ASME Press
,
New York
.
14.
Rusch
,
D.
, and
Casey
,
M. V.
,
2013
, “
The Design Space Boundaries for High Flow Capacity Centrifugal Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
031035
.10.1115/1.4007548
15.
Came
,
P. M.
, and
Robinson
,
C. J.
,
1998
, “
Centrifugal Compressor Design
,”
Proc. Inst. Mech. Eng.
,
213
(
2
), pp.
139
155
.10.1243/0954406991522239
16.
Aungier
,
R. H.
,
1995
, “
Mean Streamline Aerodynamic Performance Analysis of Centrifugal Compressors
,”
ASME J. Turbomach.
,
117
(
3
), pp.
360
366
.10.1115/1.2835669
17.
Aungier
,
R. H.
,
1995
, “
Centrifugal Compressor Stage Preliminary Aerodynamic Design and Component Sizing
,”
ASME
Paper No. 95-GT-078.10.1115/95-GT-078
18.
Sirakov
,
B.
, and
Casey
,
M.
,
2013
, “
Evaluation of Heat Transfer Effects on Turbocharger Performance
,”
ASME J. Turbomach.
,
135
(
2
), p.
021011
.10.1115/1.4006608
19.
Stanitz
,
J. D.
,
1952
, “
One-Dimensional Compressible Flow in Vaneless Diffusers of Radial-and Mixed-Flow Centrifugal Compressors, Including Effects of Friction, Heat Transfer and Area Change
,” Lewis Flight Propulsion Laboratory, Cleveland, OH, Report No.
NACA-TN-2610
.https://ntrs.nasa.gov/api/citations/19930083365/downloads/19930083365.pdf
20.
Dubitsky
,
O.
, and
Japikse
,
D.
,
2008
, “
Vaneless Diffuser Advanced Model
,”
ASME J. Turbomach.
,
130
(
1
), p.
011020
.10.1115/1.2372781
21.
Sakurai
,
T.
,
Yuasa
,
S.
,
Honda
,
T.
, and
Shimotori
,
S.
,
2009
, “
Heat Loss Reduction and Hydrocarbon Combustion in Ultra-Micro Combustors for Ultra-Micro Gas Turbines
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3067
3073
.10.1016/j.proci.2008.06.002
22.
Sadasivuni
,
V.
, and
Agrawal
,
A. K.
,
2009
, “
A Novel Meso-Scale Combustion System for Operation With Liquid Fuels
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3155
3162
.10.1016/j.proci.2008.06.039
23.
Yuasa
,
S.
,
Oshimi
,
K.
, and
Uehara
,
M.
,
2003
, “
Concepts and Combustion Characteristics of an Ultra-Micro and a Micro Combustor
,” International Gas Turbine Congress, Tokyo, Japan, Nov. 2–7, Paper No.
IGTC2003Tokyo OS-108
.https://tokyo-metro-u.repo.nii.ac.jp/records/4007
24.
Mohamad
,
A. A.
,
2005
, “
Combustion in Porous Media: Fundamentals and Applications
,”
Transp. Phenom. Porous Media
,
3
, pp.
287
304
10.1016/B978-008044490-1/50015-6.
25.
Mujeebu
,
M. A.
,
Abdullah
,
M. Z.
,
Mohamad
,
A. A.
, and
Bakar
,
M. A.
,
2010
, “
Trends in Modeling of Porous Media Combustion
,”
Prog. Energy Combust. Sci.
,
36
(
6
), pp.
627
650
.10.1016/j.pecs.2010.02.002
26.
McBride
,
B. J.
,
2002
, “
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
,” John H. Glenn Research Center at Lewis Field, Cleveland, OH, Report No.
NASA/TP-2002-211556
.https://ntrs.nasa.gov/api/citations/20020085330/downloads/20020085330.pdf
27.
Isomura
,
K.
,
Murayama
,
M.
,
Teramoto
,
S.
,
Hikichi
,
K.
,
Endo
,
Y.
,
Togo
,
S.
, and
Tanaka
,
S.
,
2006
, “
Experimental Verification of the Feasibility of a 100 W Class Micro-Scale Gas Turbine at an Impeller Diameter of 10 mm
,”
J. Micromech. Microeng.
,
16
(
9
), pp.
S254
S261
.10.1088/0960-1317/16/9/S13
28.
Liu
,
J.
,
Zhang
,
D.
,
Hou
,
L.
,
Yang
,
J.
, and
Xu
,
G.
,
2022
, “
Laminar Burning Speed of Aviation Kerosene at Low Pressures
,”
Energies
,
15
(
6
), p.
2191
.10.3390/en15062191
29.
Giovannoni
,
V.
,
Sharma
,
R. N.
, and
Raine
,
R. R.
,
2017
, “
Thermal Performances of a Small-Scale Regenerative Combustion Chamber for Ultra-Micro Gas Turbine
,”
Combust. Sci. Technol.
,
189
(
11
), pp.
1859
1877
.10.1080/00102202.2017.1333986
30.
Dietrich
,
B.
,
Schabel
,
W.
,
Kind
,
M.
, and
Martin
,
H.
,
2009
, “
Pressure Drop Measurements of Ceramic Sponges—Determining the Hydraulic Diameter
,”
Chem. Eng. Sci.
,
64
(
16
), pp.
3633
3640
.10.1016/j.ces.2009.05.005
31.
Casey
,
M. V.
, and
Fesich
,
T. M.
,
2010
, “
The Efficiency of Turbocharger Compressors With Diabatic Flows
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
72302
.10.1115/1.4000300
32.
Rodgers
,
C.
, and
Geiser
,
R.
,
1987
, “
Performance of a High-Efficiency Radial/Axial Turbine
,”
ASME J. Turbomach.
,
109
(
2
), pp.
151
154
.10.1115/1.3262077
33.
Whittfield
,
A.
,
1990
, “
The Preliminary Design of Radial Inflow Turbines
,”
ASME J. Turbomach.
,
112
, pp.
50
57
.10.1115/1.2927420
34.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japikse
,
D.
,
2003
,
Axial and Radial Turbines
,
Concepts NREC
,
White River Junction, VT
.
35.
Ventura
,
C.
,
Jacobs
,
P. A.
,
Rowlands
,
A. S.
,
Petrie-Repar
,
P.
, and
Sauret
,
E.
,
2012
, “
Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach
,”
ASME J. Fluids Eng.
,
134
(
3
), p. 0
31102
.10.1115/1.4006174
36.
Demierre
,
J.
,
Rubino
,
A.
, and
Schiffmann
,
J.
,
2015
, “
Modeling and Experimental Investigation of an Oil-Free Microcompressor-Turbine Unit for an Organic Rankine Cycle Driven Heat Pump
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032602
.10.1115/1.4028391
37.
Mounier
,
V.
,
Olmedo
,
L. E.
, and
Schiffmann
,
J.
,
2018
, “
Small Scale Radial Inflow Turbine Performance and Pre-Design Maps for Organic Rankine Cycles
,”
Energy
,
143
, pp.
1072
1084
.10.1016/j.energy.2017.11.002
38.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics
,
ASME Press
,
New York
.
39.
Badum
,
L.
,
Prochaska
,
T.
,
Schwentenwein
,
M.
, and
Cukurel
,
B.
,
2024
, “
Ceramic and Metal Additive Manufacturing of Monolithic Rotors From Sialon and Inconel and Comparison of Aerodynamic Performance for 300 W Scale Microturbines
,”
ASME J. Eng. Gas Turbines Power
,
146
(
2
), p.
021006
.10.1115/1.4063421
40.
Cho
,
S. K.
,
Lee
,
J.
, and
Lee
,
J.
,
2018
, “
Comparison of Loss Models for Performance Prediction of Radial Inflow Turbine
,”
Int. J. Fluid Mach. Syst.
,
11
(
1
), pp.
97
109
.10.5293/IJFMS.2018.11.1.097
41.
Suhrmann
,
J. F.
,
Peitsch
,
D.
,
Gugau
,
M.
,
Heuer
,
T.
, and
Tomm
,
U.
,
2010
, “
Validation and Development of Loss Models for Small Size Radial Turbines
,”
ASME
Paper No. GT2010-22666.10.1115/GT2010-22666
42.
Chen
,
H.
, and
Baines
,
N. C.
,
1994
, “
The Aerodynamic Loading of Radial and Mixed-Flow Turbines
,”
Int. J. Mech. Sci.
,
36
(
1
), pp.
63
79
.10.1016/0020-7403(94)90007-8
43.
Futral
,
S. M.
, and
Wasserbauer
,
C. A.
,
1965
, “
Off-Design Performance Prediction With Experimental Verification for a Radial-Inflow Turbine
,” NASA, Cleveland, OH, Report No.
TN D-2621
.https://books.google.co.in/books?id=N1kzLAHfK-IC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
44.
Paltrinieri
,
A.
,
2014
, “
A Mean-Line Model to Predict the Design Performance of Radial Inflow Turbines in Organic Rankine Cycles
,”
Master thesis
,
Department of Industrial Engineering, University of Padova
,
Padova, Italy
.https://thesis.unipd.it/retrieve/4ffc3fe9-5370-478d-b607-e1c578bd62ce/Tesi_Paltrinieri.pdf
45.
Jansen
,
W.
,
1967
, “
A Method for Calculating the Flow in a Centrifugal Impeller When Entropy Gradient Are Present
,”
Royal Society Conference on Internal Aerodynamics
, Cambridge, UK, July 19–21, pp.
133
146
.https://www.sciepub.com/reference/142868
46.
Rodgers
,
C.
,
1967
, “
Efficiency and Performance Characteristics of Radial Turbines
,”
SAE Trans.
,
75
, pp.
681
692
.10.4271/660754
47.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
48.
Nachouane
,
A. B.
,
Abdelli
,
A.
,
Friedrich
,
G.
, and
Vivier
,
S.
,
2015
, “
Numerical Approach for Thermal Analysis of Heat Transfer Into a Very Narrow Air Gap of a Totally Enclosed Permanent Magnet Integrated Starter Generator
,”
IEEE Energy Conversion Congress and Exposition
, Montreal, QC, Canada, Sept. 20–24, pp.
1749
1756
.10.1109/ECCE.2015.7309907
49.
Tanaka
,
S.
,
Esashi
,
M.
,
Isomura
,
K.
,
Hikichi
,
K.
,
Endo
,
Y.
, and
Togo
,
S.
,
2007
, “
Hydroinertia Gas Bearing System to Achieve 470m∕ s Tip Speed of 10 mm-Diameter Impellers
,”
ASME J. Tribol.
,
129
(
3
), pp.
655
659
.10.1115/1.2736707
50.
Peirs
,
J.
,
Waumans
,
T.
,
Vleugels
,
P.
,
Al-Bender
,
F.
,
Stevens
,
T.
,
Verstraete
,
T.
,
Stevens
,
S.
, et al.,
2007
, “
Micropower Generation With Microgasturbines: A Challenge
,”
Proc. Inst. Mech. Eng., Part C
,
221
(
4
), pp.
489
500
.10.1243/0954406JMES472
51.
Seo
,
J.
,
Lim
,
H. S.
,
Park
,
J.
,
Park
,
M. R.
, and
Choi
,
B. S.
,
2017
, “
Development and Experimental Investigation of a 500-W Class Ultra-Micro Gas Turbine Power Generator
,”
Energy
,
124
, pp.
9
18
.10.1016/j.energy.2017.02.012
52.
Dessornes
,
O.
, and
Zwyssig
,
C.
,
2010
, “
Micro-Generator for Ultra Micro Gas Turbine
,”
Power MEMS 2010
,
Leuven, Belgium
.
53.
International Organization for Standardization
,
2017
,
ISO 15:2017: Rolling Bearings—Radial Bearings—Boundary Dimensions, General Plan
,
International Organization for Standardization
,
Geneva, Switzerland
.
54.
Zwyssig
,
C.
, and
Kolar
,
J. W.
,
2006
, “
Design Considerations and Experimental Results of a 100 W, 500 000 Rpm Electrical Generator
,”
J. Micromech. Microeng.
,
16
(
9
), pp.
S297
S302
.10.1088/0960-1317/16/9/S18
55.
Zwyssig
,
C.
,
2008
, “
An Ultra-High-Speed Electrical Drive System
,”
Ph.D. dissertation
,
Eidgenössische Technische Hochschule Zürich
,
Zurich, Switzerland
.https://www.pespublications.ee.ethz.ch/uploads/tx_ethpublications/main_A4.pdf
56.
Pfister
,
P.
, and
Perriard
,
Y.
,
2010
, “
Very-High-Speed Slotless Permanent-Magnet Motors: Analytical Modeling, Optimization, Design, and Torque Measurement Methods
,”
IEEE Trans. Ind. Electron.
,
57
(
1
), pp.
296
303
.10.1109/TIE.2009.2027919
57.
Luomi
,
J.
,
Zwyssig
,
C.
,
Looser
,
A.
, and
Kolar
,
J. W.
,
2009
, “
Efficiency Optimization of a 100-W 500 000-r/Min Permanent-Magnet Machine Including Air-Friction Losses
,”
IEEE Trans. Ind. Appl.
,
45
(
4
), pp.
1368
1377
.10.1109/TIA.2009.2023492
58.
Hearn
,
E.
,
1997
,
Mechanics of Materials 2: The Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials
,
Butterworth-Heinemann
,
Oxford, UK
.
59.
Larsonneur
,
R.
,
1990
, “
Design and Control of Active Magnetic Bearing Systems for High Speed Rotation
,”
Ph.D. dissertation
,
ETH Zurich
,
Zurich, Switzerland
.10.3929/ethz-a-000578355
60.
Polinder
,
H.
,
1998
, “
On the Losses in a High-Speed Permanent-Magnet Generator With Rectifier
,”
Ph.D. dissertation
,
University of Delft
,
Delft, NL
.http://resolver.tudelft.nl/uuid:3f6cd8ea-0aa9-4511-a2a4-49b3405cf53a
61.
Borisavljevic
,
A.
,
2012
, “
Limits, Modeling and Design of High-Speed Permanent Magnet Machines
,”
Ph.D. dissertation
,
University of Delft
,
Delft, NL
.https://beckassets.blob.core.windows.net/product/readingsample/11239668/9783642334566_excerpt_001.pdf
62.
Liu
,
N.
,
Hung
,
K.
,
Yang
,
S.
,
Lee
,
F.
, and
Liu
,
C.
,
2020
, “
Design of High-Speed Permanent Magnet Motor Considering Rotor Radial Force and Motor Losses
,”
Energies
,
13
(
22
), p.
5872
.10.3390/en13225872
63.
Bilgen
,
E.
, and
Boulos
,
R.
,
1973
, “
Functional Dependence of Torque Coefficient of Coaxial Cylinders on Gap Width and Reynolds Numbers
,”
ASME J. Fluids Eng.
,
95
(
1
), pp.
122
126
.10.1115/1.3446944
64.
Mack
,
M.
,
1967
, “
Luftreibungsverluste Bei Elektrischen Maschinen Kleiner Baugrösse
,” Dissertation,
University of Stuttgart
,
Stuttgart, Germany
.
65.
Burnand
,
G. P.-A.
,
2017
, “
Validation by Measurements of a Windage Losses Model for Very-High-Speed Machines
,”
International Conference on Electrical Machines and Systems
, Sydney, NSW, Australia, Aug. 11–14, Vol.
20
, pp.
1
4
.10.1109/ICEMS.2017.8056273
66.
Burnand
,
G.
,
Araujo
,
D. M.
, and
Perriard
,
Y.
,
2018
, “
Optimization of Shape and Topology for Slotless Windings in BLDC Machines
,”
International Conference on Electrical Machines and Systems
, Jeju, Korea, Oct. 7–10, Vol.
21
, pp.
31
36
.10.23919/ICEMS.2018.8549062
67.
Gibson
,
L.
,
Galloway
,
L.
,
Kim
,
S. I.
, and
Spence
,
S.
,
2017
, “
Assessment of Turbulence Model Predictions for a Centrifugal Compressor Simulation
,”
J. Global Power Propul. Soc.
,
1
, pp.
142
156
.10.22261/2II890
68.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
van den Braembussche
,
R. A.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.10.1115/1.3144162
69.
Javed
,
A.
,
Arpagaus
,
C.
,
Bertsch
,
S.
, and
Schiffmann
,
J.
,
2016
, “
Small-Scale Turbocompressors for Wide-Range Operation With Large Tip-Clearances for a Two-Stage Heat Pump Concept
,”
Int. J. Refrig.
,
69
, pp.
285
302
.10.1016/j.ijrefrig.2016.06.015
70.
Balat-Pichelin
,
M.
, and
Bousquet
,
A.
,
2018
, “
Total Hemispherical Emissivity of Sintered SiC Up to 1850 K in High Vacuum and in Air at Different Pressures
,”
J. Eur. Ceram. Soc.
,
38
(
10
), pp.
3447
3456
.10.1016/j.jeurceramsoc.2018.03.050
71.
Paolini
,
C. P.
, and
Bhattacharjee
,
S.
,
2012
, “
IGE Model: An Extension of the Ideal Gas Model to Include Chemical Composition as Part of the Equilibrium State
,”
J. Thermodyn.
,
2012
, pp.
1
18
.10.1155/2012/870631
You do not currently have access to this content.