Abstract
This work outlines the development of a new natural gas/oxygen (NG/O2) fueled combustion rig located at the NASA Glenn Research Center for high-temperature environmental durability studies of advanced materials and components at atmospheric pressure. The NG/O2 burner rig can simulate the high-temperature, high-heat flux, and high-velocity thermal environments encountered in gas turbine engines. It also provides the capability to study environmental effects such as water vapor and other foreign contaminants relevant to these applications. The rig is anticipated to bridge the gap between other laboratory methods such as furnaces, jet-fueled burner rigs, high-heat flux lasers, and more expensive engine rig testing. The NG/O2 rig is expected to have maximum sample temperature capabilities over 3000 °F (1649 °C) and results in higher water vapor content compared to our Mach 0.3 to Mach 1.0 jet-A burner rigs which is important for characterizing current and next-generation environmental barrier coatings. This paper will provide an overview of the development of the NG/O2 burner rig, initial characterization, and current research and development efforts on environmental barrier coated ceramic matrix composites.