Abstract

This work outlines the development of a new natural gas/oxygen (NG/O2) fueled combustion rig located at the NASA Glenn Research Center for high-temperature environmental durability studies of advanced materials and components at atmospheric pressure. The NG/O2 burner rig can simulate the high-temperature, high-heat flux, and high-velocity thermal environments encountered in gas turbine engines. It also provides the capability to study environmental effects such as water vapor and other foreign contaminants relevant to these applications. The rig is anticipated to bridge the gap between other laboratory methods such as furnaces, jet-fueled burner rigs, high-heat flux lasers, and more expensive engine rig testing. The NG/O2 rig is expected to have maximum sample temperature capabilities over 3000 °F (1649 °C) and results in higher water vapor content compared to our Mach 0.3 to Mach 1.0 jet-A burner rigs which is important for characterizing current and next-generation environmental barrier coatings. This paper will provide an overview of the development of the NG/O2 burner rig, initial characterization, and current research and development efforts on environmental barrier coated ceramic matrix composites.

References

1.
Fox
,
D. S.
,
Miller
,
R. A.
,
Zhu
,
D.
,
Perez
,
M.
,
Cuy
,
M. D.
, and
Robinson
,
R. C.
,
2011
, “
Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory
,”
National Aeronautics and Space Administration
,
Washington, DC
, Report No.
NASA/TM-2011-216986
.https://ntrs.nasa.gov/api/citations/20110008403/downloads/20110008403.pdf
2.
Santoro
,
G. J.
,
Gokoglu
,
S. A.
,
Kohl
,
F. J.
,
Stearns
,
C. A.
, and
Rosner
,
D. A.
,
1984
, “
Deposition of Na2SO4 From Salt-Seeded Combustion Gases of a High Velocity Burner Rig
,”
National Aeronautics and Space Administration
,
Washington, DC
, Report No.
NASA/TM-83751
.https://ui.adsabs.harvard.edu/abs/1984STIN...8431558S/abstract
3.
Bhatt
,
R. T.
,
Choi
,
S. R.
,
Cosgriff
,
L. M.
,
Fox
,
D. S.
, and
Lee
,
K. N.
,
2008
, “
Impact Resistance of Environmental Barrier Coated SiC/SiC Composites
,”
Mater. Sci. Eng., A
,
476
(
1–2
), pp.
8
19
.10.1016/j.msea.2007.04.067
4.
Smialek
,
J. L.
,
Cuy
,
M. D.
,
Harder
,
B. J.
,
Garg
,
A.
, and
Rogers
,
R. B.
,
2020
, “
Durability of YSZ Coated Ti2AlC in 1300 °C High Velocity Burner Rig Tests
,”
J. Am. Ceram. Soc.
,
103
(
12
), pp.
7014
7030
.10.1111/jace.17154
5.
Presby
,
M. J.
, and
Harder
,
B. J.
,
2021
, “
Solid Particle Erosion of a Plasma Spray—Physical Vapor Deposition Environmental Barrier Coating in a Combustion Environment
,”
Ceram. Int.
,
47
(
17
), pp.
24403
24411
.10.1016/j.ceramint.2021.05.154
6.
Oxygen Generating Systems Intl.
, 2022, “
What Is Pressure Swing Adsorption Technology
,”
NOVAIR USA Corp.
,
North Tonawanda, NY
, accessed Dec. 6, 2022, https://www.ogsi.com/pressure-swing-adsorption-technology
7.
Hendershot
,
R. J.
,
Lebrecht
,
T. D.
, and
Easterbrook
,
N. C.
,
2010
, “
Use Oxygen to Improve Combustion and Oxidation
,”
Chem. Eng. Prog.
,
106
(
7
), pp.
57
61
.https://www.aiche.org/resources/publications/cep/2010/july/use-oxygen-improvecombustion-and-oxidation
8.
McBride
,
B. J.
, and
Sanford
,
G.
,
1996
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. User's Manual and Program Description
,”
National Aeronautics and Space Administration
,
Washington, DC
, Report No.
19950013764
.https://ntrs.nasa.gov/citations/19960044559
9.
Baukal
,
C. E.
, and
Schwartz
,
R. E.
,
2001
,
The John Zink Combustion Handbook
,
CRC Press LLC
,
Boca Raton, FL
.
10.
Endo
,
M.
,
Tacina
,
K.
,
Hicks
,
Y.
,
Capil
,
T.
, and
Moder
,
J.
,
2021
, “
Numerical Simulation of Lean Blowout of Alternative Fuels in 7-Element Lean Direct Injector
,”
AIAA
Paper No. 2021-3458.10.2514/6.2021-3458
11.
Chen
,
K. H.
,
Torris
,
A. T.
,
Quealy
,
A.
, and
Liu
,
N. S.
,
1998
, “
Benchmark Test Cases for the National Combustion Code
,”
AIAA
Paper No. 98-3855.10.2514/6.98-3855
12.
Shih
,
T. H.
,
Chen
,
K. H.
, and
Liu
,
N. S.
,
1998
, “
A Non-Linear kε Model for Turbulent Shear Flows
,”
AIAA
Paper No. 98-3983.10.2514/6.98-3983
13.
Biedron
,
R. T.
, et al.,
2020
, “
FUN3D Manual: 13.7
,” National Aeronautics and Space Administration, Washington, DC, Report No.
20205010139
.https://fun3d.larc.nasa.gov/papers/FUN3D_Manual-13.7_CORRECTED_COPY.pdf
14.
Pullins
,
C. A.
, and
Diller
,
T. E.
,
2012
, “
Direct Measurement of Hot-Wall Heat Flux
,”
J. Thermophys. Heat Transfer
,
26
(
3
), pp.
430
438
.10.2514/1.T3772
15.
Lam
,
C. S.
, and
Weckman
,
E. J.
,
2009
, “
Steady-State Heat Flux Measurements in Radiative and Mixed Radiative—Convective Environments
,”
Fire Mater.
,
33
(
7
), pp.
303
321
.10.1002/fam.992
16.
Opila
,
E. J.
,
Smialek
,
J. L.
,
Robinson
,
R. C.
,
Fox
,
D. S.
, and
Jacobson
,
N. S.
,
1999
, “
SiC Recession Caused by SiO2 Scale Volatility Under Combustion Conditions: II, Thermodynamics and Gaseous-Diffusion Model
,”
J. Am. Ceram. Soc.
,
82
(
7
), pp.
1826
1834
.10.1111/j.1151-2916.1999.tb02005.x
17.
Lee
,
K. N.
,
Zhu
,
D.
, and
Lima
,
R. S.
,
2021
, “
Perspectives on Environmental Barrier Coatings (EBCs) Manufactured Via Air Plasma Spray (APS) on Ceramic Matrix Composites (CMCs): A Tutorial Paper
,”
J. Therm. Spray Technol.
,
30
(
1–2
), pp.
40
58
.10.1007/s11666-021-01168-0
18.
Opila
,
E. J.
, and
Hann
,
R. E.
, Jr.
,
1997
, “
Paralinear Oxidation of CVD SiC in Water Vapor
,”
J. Am. Ceram. Soc.
,
80
(
1
), pp.
197
205
.10.1111/j.1151-2916.1997.tb02810.x
19.
Fox
,
D. S.
,
Opila
,
E. J.
, and
Hann
,
R. E.
,
2004
, “
Paralinear Oxidation of CVD SiC in Simulated Fuel-Rich Combustion
,”
J. Am. Ceram. Soc.
,
83
(
7
), pp.
1761
1767
.10.1111/j.1151-2916.2000.tb01461.x
20.
Opila
,
E. J.
,
Robinson
,
R. C.
, and
Cuy
,
M. D.
,
2002
, “
High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor
,” Proceedings of the 10th International Conferences on Modern Materials and Technologies (
CIMTEC
), Florence, Italy, July 14–19.https://ntrs.nasa.gov/citations/20020071135
21.
Robinson
,
R. C.
, and
Smialek
,
J. L.
,
1999
, “
SiC Recession Caused by SiO2 Scale Volatility Under Combustion Conditions: I, Experimental Results and Empirical Model
,”
J. Am. Ceram. Soc.
,
82
(
7
), pp.
1817
1825
.10.1111/j.1151-2916.1999.tb02004.x
22.
NASA Aeronautics Research Mission Directorate
,
2020
, “
Commercial Supersonic Technology (CST) Project
,”
National Aeronautics and Space Administration
,
Washington, DC
.https://www.nasa.gov/aeroresearch/programs/aavp/cst
23.
Tacina
,
K.
,
Podboy
,
D.
, and
Guzman
,
F.
,
2022
, “
Flametube Evaluation of a Lean-Lean Combustor Concept Developed for Supersonic Cruise Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051008
.10.1115/GT2022-81792
24.
Harder
,
B. J.
,
Presby
,
M. J.
,
Salem
,
J. A.
,
Arnold
,
S. M.
, and
Mital
,
S. K.
,
2021
, “
Environmental Barrier Coating Oxidation and Adhesion Strength
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031004
.10.1115/1.4049414
25.
Lee
,
K. N.
,
2019
, “
Yb2Si2O7 Environmental Barrier Coatings With Reduced Bond Coat Oxidation Rates Via Chemical Modifications for Long Life
,”
J. Am. Ceram. Soc.
,
102
(
3
), pp.
1507
1521
.10.1111/jace.15978
26.
NASA Aeronautics Research Mission Directorate
,
2022
, “
Hybrid Thermally Efficient Core (HyTEC) Project
,”
National Aeronautics and Space Administration
,
Washington, DC
.https://www.nasa.gov/aeroresearch/programs/aavp/hytec-project-description/
27.
Lee
,
K. N.
,
Waters
,
D. L.
,
Puleo
,
B. J.
,
Garg
,
A.
,
Jennings
,
W. D.
,
Costa
,
G.
, and
Sacksteder
,
D. E.
,
2021
, “
Development of Oxide-Based High Temperature Environmental Barrier Coatings for Ceramic Matrix Composites Via the Slurry Process
,”
J. Eur. Ceram. Soc.
,
41
(
2
), pp.
1639
1653
.10.1016/j.jeurceramsoc.2020.10.012
You do not currently have access to this content.