Abstract

Gas bearings use pressurized gas as a lubricant to support and guide rotating machinery. These bearings have a number of advantages over traditional lubricated bearings, including higher efficiency in a variety of applications and reduced maintenance requirements. However, they are more complex to operate and exhibit nonlinear behaviors. This paper presents a parametric hyper reduced order model (h-ROM) of a gas bearings supported rotor enabling to speed up the computations up to a factor 100 while preserving satisfactory accuracy. A Galerkin projection setting is employed to reduce the dimension of the governing equations and the nonlinear terms are efficiently tackled with a sparse sampling technique. The performances of the h-ROM are compared to a high fidelity model both in terms of accuracy and computation time, demonstrating the potential for future anomaly detection applications.

References

1.
Heng
,
A.
,
Zhang
,
S.
,
Tan
,
A. C.
, and
Mathew
,
J.
,
2009
, “
Rotating Machinery Prognostics: State of the Art, Challenges and Opportunities
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
724
739
.10.1016/j.ymssp.2008.06.009
2.
Chinesta
,
F.
,
Cueto
,
E.
,
Abisset-Chavanne
,
E.
,
Duval
,
J. L.
, and
Khaldi
,
F. E.
,
2020
, “
Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data
,”
Arch. Comput. Methods Eng.
,
27
(
1
), pp.
105
134
.10.1007/s11831-018-9301-4
3.
Benner
,
P.
,
Gugercin
,
S.
, and
Willcox
,
K.
,
2015
, “
A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems
,”
SIAM Rev.
,
57
(
4
), pp.
483
531
.10.1137/130932715
4.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures, Parts I, II and III
,”
Quart. Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
5.
Rathinam
,
M.
, and
Petzold
,
L. R.
,
2003
, “
A New Look at Proper Orthogonal Decomposition
,”
SIAM J. Numer. Anal.
,
41
(
5
), pp.
1893
1925
.10.1137/S0036142901389049
6.
Astrid
,
P.
,
Weiland
,
S.
,
Willcox
,
K.
, and
Backx
,
T.
,
2008
, “
Missing Point Estimation in Models Described by Proper Orthogonal Decomposition
,”
IEEE Trans. Autom. Control
,
53
(
10
), pp.
2237
2251
.10.1109/TAC.2008.2006102
7.
Carlberg
,
K.
,
Farhat
,
C.
,
Cortial
,
J.
, and
Amsallem
,
D.
,
2013
, “
The GNAT Method for Nonlinear Model Reduction: Effective Implementation and Application to Computational Fluid Dynamics and Turbulent Flows
,”
J. Comput. Phys.
,
242
, pp.
623
647
.10.1016/j.jcp.2013.02.028
8.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2010
, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
.10.1137/090766498
9.
Washabaugh
,
K.
,
Amsallem
,
D.
,
Zahr
,
M.
, and
Farhat
,
C.
,
2012
, “
Nonlinear Model Reduction for CFD Problems Using Local Reduced-Order Bases
,”
42nd AIAA Fluid Dynamics Conference and Exhibit
, New Orleans, LA, June 25–28, p.
2686
.10.2514/6.2012-2686
10.
Peherstorfer
,
B.
,
Butnaru
,
D.
,
Willcox
,
K.
, and
Bungartz
,
H.-J.
,
2014
, “
Localized Discrete Empirical Interpolation Method
,”
SIAM J. Sci. Comput.
,
36
(
1
), pp.
A168
A192
.10.1137/130924408
11.
Amsallem
,
D.
,
Cortial
,
J.
,
Carlberg
,
K.
, and
Farhat
,
C.
,
2009
, “
A Method for Interpolating on Manifolds Structural Dynamics Reduced-Order Models
,”
Int. J. Numer. Methods Eng.
,
80
(
9
), pp.
1241
1258
.10.1002/nme.2681
12.
Mosquera
,
R.
,
Hamdouni
,
A.
,
El Hamidi
,
A.
, and
Allery
,
C.
,
Laboratoire LaSIE, Université de La Rochelle, Avenue M. Crépeau, 17042 La Rochelle, France
2019
, “
POD Basis Interpolation Via Inverse Distance Weighting on Grassmann Manifolds
,”
Discrete Contin. Dyn. Syst.-S
,
12
(
6
), pp.
1743
1759
.10.3934/dcdss.2019115
13.
Bonello
,
P.
, and
Pham
,
H. M.
,
2014
, “
The Efficient Computation of the Nonlinear Dynamic Response of a Foil–Air Bearing Rotor System
,”
J. Sound Vib.
,
333
(
15
), pp.
3459
3478
.10.1016/j.jsv.2014.03.001
14.
Cherabi
,
B.
,
Hamrani
,
A.
,
Belaidi
,
I.
,
Khelladi
,
S.
, and
Bakir
,
F.
,
2016
, “
An Efficient Reduced-Order Method With PGD for Solving Journal Bearing Hydrodynamic Lubrication Problems
,”
C. R. Méc.
,
344
(
10
), pp.
689
714
.10.1016/j.crme.2016.05.006
15.
Iseli
,
E.
,
Guenat
,
E.
,
Tresch
,
R.
, and
Schiffmann
,
J.
,
2020
, “
Analysis of Spiral-Grooved Gas Journal Bearings by the Narrow-Groove Theory and the Finite Element Method at Large Eccentricities
,”
ASME J. Tribol.
,
142
(
4
), p. 041802.10.1115/1.4045636
16.
Liu
,
W.
,
Bättig
,
P.
,
Wagner
,
P. H.
, and
Schiffmann
,
J.
,
2021
, “
Nonlinear Study on a Rigid Rotor Supported by Herringbone Grooved Gas Bearings: Theory and Validation
,”
Mech. Syst. Signal Process.
,
146
, p.
106983
.10.1016/j.ymssp.2020.106983
17.
Vohr
,
J. H.
, and
Chow
,
C. Y.
,
1965
, “
Characteristics of Herringbone-Grooved, Gas-Lubricated Journal Bearings
,”
ASME J. Basic Eng.
, 87(3), pp.
568
576
.10.1115/1.3650607
18.
Bonneau
,
D.
, and
Absi
,
J.
,
1994
, “
Analysis of Aerodynamic Journal Bearings With Small Number of Herringbone Grooves by Finite Element Method
,”
ASME J. Tribol.
,
116
(
4
), pp.
698
704
.10.1115/1.2927320
19.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The Matlab Ode Suite
,”
SIAM J. Sci, Comput.
,
18
(
1
), pp.
1
22
.10.1137/S1064827594276424
20.
Zimmermann
,
R.
,
2020
, “
Hermite Interpolation and Data Processing Errors on Riemannian Matrix Manifolds
,”
SIAM J. Sci. Comput.
,
42
(
5
), pp.
A2593
A2619
.10.1137/19M1282878
You do not currently have access to this content.