Abstract

Computational fluid dynamics (CFD) simulations are performed to study the potential of energy-assisted compression ignition (EACI) strategy for enabling ignition and enhancing combustion of different cetane number jet fuels during high-altitude operation. EACI employs an ignition assistant (IA), which is an advanced glow-plug design with the ability to sustain higher temperatures for prolonged periods, to provide the necessary ignition energy for precise ignition control and enhanced combustion. In the numerical simulations, the combustion chemistry solver is coupled with a multicomponent wide distillation fuel mechanism, energy source modeling, and a turbulence-chemistry interaction model to accurately capture the ignition assisted-combustion. The simulation is first validated against optical engine measurements for cetane number (CN) 48 jet fuel and then transferred to another single-cylinder test engine to study the ignition and combustion characteristics of EACI with CN 35 jet fuel at varying IA temperatures. Simulation results show that EACI significantly improves fuel ignitability. Ignition delay reductions for CN 48 fuel of 57% and CN 35 fuel of 25% are noted at IA temperatures of 1550 K and 1405 K compared to when the IA is switched off. Furthermore, EACI improved the combustion efficiency to 99.7% compared to the 90% estimated for the IA off case in the optical engine.

References

1.
Sahoo
,
S.
,
Zhao
,
X.
, and
Kyprianidis
,
K.
,
2020
, “
A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft
,”
Aerospace
,
7
(
4
), p.
44
.10.3390/aerospace7040044
2.
Janovec
,
M.
,
Čerňan
,
J.
,
Škultéty
,
F.
, and
Novák
,
A.
,
2021
, “
Design of Batteries for a Hybrid Propulsion System of a Training Aircraft
,”
Energies
,
15
(
1
), p.
49
.10.3390/en15010049
3.
Sliwinski
,
J.
,
Gardi
,
A.
,
Marino
,
M.
, and
Sabatini
,
R.
,
2017
, “
Hybrid-Electric Propulsion Integration in Unmanned Aircraft
,”
Energy
,
140
, pp.
1407
1416
.10.1016/j.energy.2017.05.183
4.
Rendón
,
M. A.
,
Sánchez R
,
C. D.
,
Gallo M
.,
J.
, and
Anzai
,
A. H.
,
2021
, “
Aircraft Hybrid-Electric Propulsion: Development Trends, Challenges and Opportunities
,”
J. Control. Autom. Electr. Syst.
,
32
(
5
), pp.
1244
1268
.10.1007/s40313-021-00740-x
5.
Riboldi
,
C. E. D.
,
2019
, “
Energy-Optimal Off-Design Power Management for Hybrid-Electric Aircraft
,”
Aerosp. Sci. Technol.
,
95
, p.
105507
.10.1016/j.ast.2019.105507
6.
Motily
,
A. H.
,
Ryu
,
J. I.
,
Kim
,
K.
,
Kim
,
K.
,
Kweon
,
C.-B. M.
,
Lee
,
T.
,
2021
, “
High-Pressure Fuel Spray Ignition Behavior With Hot Surface Interaction
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5665
5672
.10.1016/j.proci.2020.08.041
7.
Amezcua
,
E. R.
,
Kim
,
K.
,
Rothamer
,
D.
, and
Kweon
,
C.-B.
,
2022
, “
Ignition Sensitivity Analysis for Energy-Assisted Compression-Ignition Operation on Jet Fuels With Varying Cetane Number
,”
SAE Int. J. Adv. Curr. Prac. Mobility,
4(5), pp.
1651
1666
.10.4271/2022-01-0443
8.
Pastor
,
J. V.
,
Bermúdez
,
V.
,
García-Oliver
,
J. M.
, and
Ramírez-Hernández
,
J. G.
,
2011
, “
Influence of Spray-Glow Plug Configuration on Cold Start Combustion for High-Speed Direct Injection Diesel Engines
,”
Energy
,
36
(
9
), pp.
5486
5496
.10.1016/j.energy.2011.07.028
9.
Pastor
,
J. V.
,
García-Oliver
,
J. M.
,
Pastor
,
J. M.
, and
Ramírez-Hernández
,
J. G.
,
2011
, “
Ignition and Combustion Development for High Speed Direct Injection Diesel Engines Under Low Temperature Cold Start Conditions
,”
Fuel
,
90
(
4
), pp.
1556
1566
.10.1016/j.fuel.2011.01.008
10.
Li
,
Q.
,
Shayler
,
P. J.
,
McGhee
,
M.
, and
La Rocca
,
A.
,
2016
, “
The Initiation and Development of Combustion Under Cold Idling Conditions Using a Glow Plug in Diesel Engines
,”
Int. J. Engine Res.
, pp.
240
255
.10.1177/1468087416652266
11.
Cheng
,
S. X.
, and
Wallace
,
J. S.
,
2012
, “
Modeling of Ignition and Combustion for Glow Plug Assisted Direct Injection Natural Gas Engines
,” ASME Paper No. ICEF2012-92099.10.1115/ICEF2012-92099
12.
Mueller
,
C. J.
, and
Musculus
,
M. P.
,
2001
, “
Glow Plug Assisted Ignition and Combustion of Methanol in an Optical DI Diesel Engine
,” SAE Technical Paper No. 2001-01-2004.10.4271/2001-01-2004
13.
Krishnan
,
R. A.
,
Panda
,
K.
, and
Ramesh
,
A.
,
2022
, “
Simulation Studies on Glow Plug Assisted Neat Methanol Combustion in a Diesel Engine
,”
SAE
Paper No. 2022-01-0519.10.4271/2022-01-0519
14.
Laget
,
O.
,
Pacaud
,
P.
, and
Perrin
,
H.
,
2009
, “
Cold Start on Low Compression Ratio Diesel Engine: Experimental and 3D RANS Computation Investigations
,”
Oil Gas Sci. Technol. IFP
, 64(3), pp.
407
429
.10.2516/ogst/2009013
15.
Zhao
,
L.
, et al.,
2020
, “
Numerical Evaluation of Spray-Guided Glow Plug Assistance on Gasoline Compression Ignition During Cold Idle Operation in a Heavy-Duty Diesel Engine
,” ASME Paper No. ICEF2020-2959.10.1115/ICEF2020-2959
16.
Amezcua
,
E. R.
,
Rothamer
,
D. A.
,
Kim
,
K. S.
, and
Kweon
,
C. B. M.
,
2020
, “
Optical Engine Study of Variable Energy Assisted Compression Ignition Using a Glow Plug for Unmanned Aircraft Propulsion Systems
,”
AIAA
Paper No. AIAA 2020–
2281
.10.2514/6.2020-2281
17.
Bowditch
,
F. W.
,
1961
, “
A New Tool for Combustion Research a Quartz Piston Engine
,”
SAE
Paper No. 610002.10.4271/610002
18.
Groendyk
,
M.
, and
Rothamer
,
D.
,
2020
, “
Establishing Thermal Stability in an Optically-Accessible CIDI Engine
,”
SAE Int. J. Adv. Curr. Pract. Mobil.
, 2(5), pp.
2650
2664
.10.4271/2020-01-0789
19.
Mignakallu
,
N.
, et al.,
2022
, “
Impact of Ignition Assistant on Combustion of Cetane 30 and 35 Jet-Fuel Blends in a Compression-Ignition Engine at Moderate Load and Speed
,” ASME Paper No. ICEF2022-90704.10.1115/ICEF2022-90704
20.
Convergent Science
,
2020
, “
CONVERGE Manual v3.0
,”
Convergent Science
.
21.
Convergent Science
,
2018
, “
Resolving Turbulence-Chemistry Interactions in Mixing-Controlled Combustion With LES and Detailed Chemistry - White Paper
,”
Convergent Science
.
22.
Xiang
,
Z.
,
Yang
,
S.
,
Xie
,
S.
,
Li
,
J.
,
Ren
,
H.
,
2020
, “
Turbulence–Chemistry Interaction Models With Finite-Rate Chemistry and Compressibility Correction for Simulation of Supersonic Turbulent Combustion
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
1546
1561
.10.1080/19942060.2020.1842248
23.
Ren
,
S.
,
Kokjohn
,
S. L.
,
Wang
,
Z.
,
Liu
,
H.
,
Wang
,
B.
,
Wang
,
J.
,
2017
, “
A Multi-Component Wide Distillation Fuel (Covering Gasoline, Jet Fuel and Diesel Fuel) Mechanism for Combustion and PAH Prediction
,”
Fuel
,
208
, pp.
447
468
.10.1016/j.fuel.2017.07.009
You do not currently have access to this content.