Abstract

The particle deposition in the internal cooling duct reduces the heat transfer efficiency, increases the instability of aero-engine operation, and brings serious challenges to the design of turbine blades. In this paper, the energy dissipation collision theory is used to predict the particle transport and deposition in the cooling duct with different pin fins. The effects of pin aspect ratio and inlet Reynolds number Re on the deposition rate, as well as heat transfer efficiency and overall thermal performance, are investigated. The results show that the endwall deposition rate is much higher than the pin deposition rate. The pin adhesion rate decreases with the increase of inlet Reynolds number. Increasing Re has little effect on the endwall deposition rate for the cooling duct with pin fins of the aspect ratio of 1 and 1.5, while it leads to an increase in heat transfer efficiency and a reduction in pin deposition rate. For the cooling duct with pin fins of the aspect ratio of 2, the endwall deposition rate increases with the increase of Re. A larger pin aspect ratio decreases the heat transfer efficiency of the cooling duct, but increasing the aspect ratio is helpful to improve the overall thermal performance and reduce the deposition rate. To account for particle deposition and thermal performance, the aspect ratio of 1.5 is recommended.

References

1.
Tabakoff
,
W.
,
1984
, “
Review—Turbomachinery Performance Deterioration Exposed to Solid Particulates Environment
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
125
134
.10.1115/1.3243088
2.
Walsh
,
W. S.
,
Thole
,
K. A.
, and
Joe
,
C.
,
2006
, “
Effects of Sand Ingestion on the Blockage of Film-Cooling Holes
,”
ASME
Paper No. GT2006-90067. 10.1115/GT2006-90067
3.
Rozati
,
A.
,
Tafti
,
D. K.
, and
Sreedharan
,
S. S.
,
2011
, “
Effects of Syngas Ash Particle Size on Deposition and Erosion of a Film Cooled Leading Edge
,”
ASME J. Turbomach.
,
133
(
1
), p.
011010
.10.1115/1.4000492
4.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2011
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hotpath
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
201
211
.10.1016/j.ijheatfluidflow.2010.10.006
5.
Bojdo
,
N.
,
Ellis
,
M.
,
Filippone
,
A.
,
Jones
,
M.
, and
Pawley
,
A.
,
2019
, “
Particle-Vane Interaction Probability in Gas Turbine Engines
,”
ASME J. Turbomach.
,
141
(
9
), p.
091010
.10.1115/1.4043953
6.
Bowen
,
C. P.
, and
Bons
,
J. P.
,
2022
, “
Enhancing Turbine Deposition Prediction Capability With Conjugate Mesh Morphing
,”
ASME J. Turbomach.
,
144
(
6
), p.
061013
.10.1115/1.4054282
7.
Liu
,
J.
,
Yu
,
K.
,
Tafti
,
D.
,
Yang
,
X.
, and
Xu
,
H.
,
2023
, “
Dust Adhesion and Deposition Behavior in Internal Cooling Duct With Pin Fins
,”
Int. J. Therm. Sci.
,
184
, p.
107943
.10.1016/j.ijthermalsci.2022.107943
8.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
104
(
4
), pp.
700
706
.10.1115/1.3245188
9.
Chyu
,
M. K.
,
Yen
,
C. H.
, and
Siw
,
S.
,
2007
, “
Comparison of Heat Transfer From Staggered Pin Fin Arrays With Circular, Cubic and Diamond Shaped Elements
,”
ASME
Paper No. GT2007-28306. 10.1115/GT2007-28306
10.
Jin
,
W.
,
Jia
,
N.
,
Wu
,
J.
,
Lei
,
J.
, and
Liu
,
L.
,
2019
, “
Numerical Study on Flow and Heat Transfer Characteristics of Pin-Fins With Different Shapes
,”
ASME
Paper No. GT2019-90520. 10.1115/GT2019-90520
11.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microsphers
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.10.1080/02786829208959537
12.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Collisions in Gas Turbine Components
,”
ASME
Paper No. GT2013-95623. 10.1115/GT2013-95623
13.
Singh
,
S.
, and
Tafti
,
D.
,
2015
, “
Particle Deposition Model for Particulate Flows at High Temperatures in Gas Turbine Components
,”
Int. J. Heat Fluid Flow
,
52
, pp.
72
83
.10.1016/j.ijheatfluidflow.2014.11.008
14.
Yu
,
K. H.
, and
Tafti
,
D.
,
2016
, “
Impact Model for Micrometer-Sized Sand Particles
,”
Powder Technol.
,
294
, pp.
11
21
.10.1016/j.powtec.2016.02.014
15.
Yu
,
K. H.
,
Elghannay
,
H. A.
, and
Tafti
,
D.
,
2017
, “
An Impulse Based Model for Spherical Particle Collisions With Sliding and Rolling
,”
Powder Technol.
,
319
, pp.
102
116
.10.1016/j.powtec.2017.06.049
16.
Yu
,
K. H.
, and
Tafti
,
D. K.
,
2019
, “
Size and Temperature Dependent Collision and Deposition Model for Micron-Sized Sand Particles
,”
ASME J. Turbomach.
,
141
(
3
), pp.
1
11
.10.1115/1.4042215
17.
Elghannay
,
H.
,
Tafti
,
D.
, and
Yu
,
K.
,
2019
, “
Evaluation of Physics Based Hard-Sphere Model With the Soft Sphere Model for Dense Fluid-Particle Flow Systems
,”
Int. J. Multiphase Flow
,
112
, pp.
100
115
.10.1016/j.ijmultiphaseflow.2018.12.004
18.
Dowd
,
C.
,
Tafti
,
D.
, and
Yu
,
K. H.
,
2017
, “
Sand Transport and Deposition in Rotating Two-Passed Ribbed Duct With Coriolis and Centrifugal Buoyancy Forces at Re=100,000
,”
ASME
Paper No. GT2017-63167. 10.1115/GT2017-63167
19.
Yu
,
K.
,
Liu
,
J.
,
Xu
,
X.
,
Yao
,
S.
,
Hou
,
N.
, and
Yue
,
Z.
,
2023
, “
Dust Transport Investigation in Ribbed Cooling Duct Integrating Temperature-Dependent Elastic-Plastic Particle Collision Model
,”
Particulate Sci. Technol.
,
41
(
1
), pp.
42
52
.10.1080/02726351.2022.2044419
20.
Han
,
H.
,
He
,
Y. L.
,
Tao
,
W. Q.
, and
Li
,
Y. S.
,
2014
, “
A Parameter Study of Tube Bundle Heat Exchangers for Fouling Rate Reduction
,”
Int. J. Heat Mass Transfer.
,
72
, pp.
210
221
.10.1016/j.ijheatmasstransfer.2014.01.010
21.
Zheng
,
Z.
,
Yang
,
W.
,
Yu
,
P.
,
Cai
,
Y.
,
Zhou
,
H.
,
Boon
,
S. K.
, and
Subbaiah
,
P.
,
2020
, “
Simulating Growth of Ash Deposit in Boiler Heat Exchanger Tube Based on CFD Dynamic Mesh Technique
,”
Fuel
,
259
, p.
116083
.10.1016/j.fuel.2019.116083
22.
Zheng
,
Z.
,
Yang
,
W.
,
Cai
,
Y.
,
Wang
,
Q.
, and
Zeng
,
G.
,
2020
, “
Dynamic Simulation on Ash Deposition and Heat Transfer Behavior on a Staggered Tube Bundle Under High-Temperature Conditions
,”
Energy
,
190
, p.
116390
.10.1016/j.energy.2019.116390
23.
Cowan
,
J. B.
,
Tafti
,
D. K.
, and
Kohli
,
A.
,
2010
, “
Investigation of Sand Particle Deposition and Erosion Within a Short Pin Fin Array
,”
ASME
Paper No. GT2010-22362. 10.1115/GT2010-22362
24.
Armenio
,
V.
, and
Fiorotto
,
V.
,
2001
, “
The Importance of the Forces Acting on Particles in Turbulent Flows
,”
Phys. Fluids
,
13
(
8
), pp.
2437
2440
.10.1063/1.1385390
25.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051503
.10.1115/1.2903901
26.
Lawson
,
S. A.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Multiple Row Arrays of Low Aspect Ratio Pin Fins
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4099
4109
.10.1016/j.ijheatmasstransfer.2011.04.001
27.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
(
1
), pp.
94
103
.10.1115/1.3262173
You do not currently have access to this content.