Abstract

To achieve higher thermal efficiency, gas turbines operate at increasingly higher turbine inlet temperatures, leading to the need for advanced cooling methods such as film cooling, impingement cooling, and passage cooling in modern high-pressure turbines (HPTs). However, accurately predicting the nonuniform temperature distribution at the HPT inlet in real-time has been a challenge, resulting in oversized cooling flow rates of up to 25% of the core engine flow. To address this issue, this paper proposes a novel approach based on discrete measurements acquired at the HPT exit to predict the turbine inlet temperature and nonuniformity magnitude. The proposed method utilizes a multiwavelet approximation technique to extract the hot-streaks-related component at the HPT exit, which is then used to approximate the HPT inlet temperature distribution based on the hot-streaks' decay rate across the HPT. This paper provides an overview of the proposed method and its potential applications in the gas turbine industry. Additionally, the impact of burner-to-burner asymmetry on the accuracy of the proposed method is analyzed, and recommendations for improving its effectiveness in such scenarios are presented.

References

1.
Nikitopoulos
,
D. E.
,
Acharya
,
S.
,
Oertling
,
J.
, and
Muldoon
,
F. H.
,
2006
, “
On Active Control of Film-Cooling Flows
,”
ASME Paper No. GT2006-90051
. 10.1115/GT2006-90051
2.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.10.2514/3.23116
3.
Schwab
,
J.
,
Stabe
,
R.
, and
Whitney
,
W.
,
1983
, “
Analytical and Experimental Study of Flow Through an Axial Turbine Stage With a Nonuniform Inlet Radial Temperature Profile
,”
AIAA Paper No. 1983–1175
.10.2514/6.1983-1175
4.
Cattafesta
,
L. N.
,
1988
, “
An Experimental Investigation of the Effects of Inlet Radial Temperature Profiles on the Aerodynamic Performance of a Transonic Turbine Stage
,”
M.S. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.http://hdl.handle.net/1721.1/35948
5.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2005
, “
The Effect of Hot Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME
Paper No. GT2005-69066.10.1115/GT2005-69066
6.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2011
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.10.1115/1.4002039
7.
Krishnamoorthy
,
V.
,
Pai
,
B. R.
, and
Sukhatme
,
S. P.
,
1988
, “
Influence of Upstream Flow Conditions on the Heat Transfer to Nozzle Guide Vanes
,”
ASME J. Turbomach.
,
110
(
3
), pp.
412
416
.10.1115/1.3262212
8.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
,
2007
, “
Effect of Hot-Streak Counts on Turbine Blade Heat Load and Forcing
,”
J. Propul. Power
,
23
(
6
), pp.
1235
1241
.10.2514/1.29603
9.
Adamczuk
,
R. R.
, and
Seume
,
J. R.
,
2012
, “
Time Resolved Full-Annulus Computations of a Turbine With Inhomogeneous Inlet Conditions
,”
JGPP
,
4
(
2
), pp.
1
7
.10.38036/jgpp.4.2_1
10.
Chi
,
Z.
,
Liu
,
H.
,
Zang
,
S.
,
Pan
,
C.
, and
Zhang
,
M.
,
2018
, “
Full-Annulus URANS Study of Inlet Hot-Streak Transportation in a Four-Stage Gas Turbine
,”
ASME
Paper No. GT2018-75596. 10.1115/GT2018-75596
11.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
,
1982
, “
High Pressure Turbine Test Hardware Detail Design Report
,”
National Aeronautics and Space Administration
,
Washington, DC
, Report No. NASA-CR-167955. https://catalogue.nla.gov.au/Record/3880806
12.
ANSYS Inc.
,
2009
, “
ANSYS CFX-Solver Theory Guide
, Ver. 12.1,”
ANSYS Inc
.,
Canonsburg, PA
.
13.
Timko
,
L. P.
,
1990
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,”
National Aeronautics and Space Administration
,
Washington, DC
, Report No. NASA-CR-168289. https://ntrs.nasa.gov/citations/19900019237
14.
Murari
,
S.
,
Sunnam
,
S.
, and
Liu
,
J. S.
,
2013
, “
Steady State and Transient CFD Studies on Aerodynamic Performance Validation of a High Pressure Turbine
,”
ASME Paper No. GT2012-68853
.10.1115/GT2012-68853
15.
Zhu
,
M.
,
He
,
X.
,
Klausmann
,
F.
,
Teng
,
J.
, and
Vahdati
,
M.
, “
Validation and Verification of RANS Solvers for TUDa-GLR-OpenStage Transonic Axial Compressor
,”
J. Global Power and Propul. Soc.
, 7, pp. 13–29.10.33737/jgpps/158034
16.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
3
), p.
031009
.10.1115/1.2987240
17.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.10.1115/1.2370748
18.
Miki
,
K.
,
Wey
,
T.
, and
Moder
,
J.
, “
Computational Study of Modeling Fully-Coupled Combustor-Turbine Interactions by the Open National Combustion Code (OpenNCC)
,”
AIAA Paper No. 2020–3689
.10.2514/6.2020-3689
19.
Chilla
,
M.
,
Pullan
,
G.
, and
Gallimore
,
S.
,
2020
, “
Reducing Instrumentation Errors Caused by Circumferential Flow-Field Variations in Multistage Axial Compressors
,”
ASME J. Turbomach.
,
142
(
9
), p.
091006
.10.1115/1.4047610
20.
Chilla
,
M.
,
Pullan
,
G.
, and
Thorne
,
G.
,
2020
, “
Sensitivity of Multi-Stage Compressor Performance Assessment to Measurement Rake Positions
,”
ASME
Paper No. GT2020-14490. 10.1115/GT2020-14490
21.
Lou
,
F.
, and
Key
,
N. L.
,
2021
, “
Reconstructing Compressor Non-Uniform Circumferential Flow Field From Spatially Undersampled Data—Part 1: Methodology and Sensitivity Analysis
,”
ASME J. Turbomach.
,
143
(
8
), p.
081002
.10.1115/1.4050433
22.
Lou
,
F.
,
Matthews
,
D. R.
,
Kormanik
,
N. J.
, and
Key
,
N. L.
,
2021
, “
Reconstructing Compressor Nonuniform Circumferential Flow Field From Spatially Undersampled Data—Part 2: Practical Application for Experiments
,”
ASME J. Turbomach.
,
143
(
8
), p.
081003
.10.1115/1.4050434
23.
Seshadri
,
P.
,
Simpson
,
D.
,
Thorne
,
G.
,
Duncan
,
A.
, and
Parks
,
G.
,
2020
, “
Spatial Flow-Field Approximation Using Few Thermodynamic Measurements—Part I: Formulation and Area Averaging
,”
ASME J. Turbomach.
,
142
(
2
), p.
021006
.10.1115/1.4045781
24.
Seshadri
,
P.
,
Duncan
,
A.
,
Simpson
,
D.
,
Thorne
,
G.
, and
Parks
,
G.
,
2020
, “
Spatial Flow-Field Approximation Using Few Thermodynamic Measurements—Part II: Uncertainty Assessments
,”
ASME J. Turbomach.
,
142
(
2
), p.
021007
.10.1115/1.4045782
25.
Seshadri
,
P.
,
Duncan
,
A.
,
Thorne
,
G.
,
Parks
,
G.
,
Diaz
,
R. V.
, and
Girolami
,
M.
,
2021
, “
Bayesian Assessments of Aeroengine Performance With Transfer Learning
,”
Data Cen. Eng.
,
3
, p.
e29
.10.1017/dce.2022.29
26.
Lou
,
F.
,
2022
, “
Approximating Combustor Exit Temperature Distribution Profiles Using Spatially Undersampled Data
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101018
.10.1115/1.4055218
You do not currently have access to this content.