Abstract

In this paper, we present combustor acoustics in a high-pressure liquid-fueled rich burn—quick quench—lean burn (RQL) styled swirl combustor with two separate fuel circuits. The fuel circuits are the primary (which has a pressure atomizer nozzle) and secondary (which has an air blast type nozzle) circuits. The data were acquired during two dynamical regimes—combustion noise, where there is an absence of large amplitude oscillations during the unsteady combustion process, and intermittency, where there are intermittent bursts of high amplitude oscillations that appear in a near-random fashion amidst regions of aperiodic low amplitude fluctuations. This dynamic transition from combustion noise to combustion intermittency is investigated experimentally by systematically varying the fuel equivalence ratio and primary-secondary fuel splits. Typical measures such as the amplitude of oscillations cannot serve as a measure of change in the dynamics from combustion noise to intermittency due to the highly turbulent nature. Hence, recurrence plots and complex networks are used to understand the differences in the combustor acoustics and velocity data during the two different regimes. We observe that the combustor transitions from stable operation to intermittency when the equivalence ratio is increased for a given primary fuel flowrate and conversely when the percentage of secondary fuel flowrate is increased for a given equivalence ratio. The contribution of this work is to demonstrate methodologies to detect combustion instability boundaries when approaching them from the stable side in highly turbulent, noisy combustors.

References

1.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Kang
,
H.
,
Lee
,
T.
,
Jin
,
U.
, and
Kim
,
K. T.
,
2021
, “
Experimental Investigation of Combustion Instabilities of a Mesoscale Multinozzle Array in a Lean-Premixed Combustor
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6035
6042
.10.1016/j.proci.2020.06.099
3.
Cohen
,
J.
, and
Anderson
,
T.
,
1996
, “
Experimental Investigation of Near-Blowout Instabilities in a Lean, Premixed Step Combustor
,“
AIAA
Paper No. 96-819.10.2514/6.1996-819
4.
Lieuwen
,
T. C.
,
1999
, “
Investigation of Combustion Instability Mechanisms in Premixed Gas Turbines
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.https://www.researchgate.net/publication/27535682_Investigation_of_combustion_instability_mechanisms_in_premixed_gas_turbines
5.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
6.
McManus
,
K. R.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.10.1016/0360-1285(93)90020-F
7.
Nair
,
V.
,
Thampi
,
G.
, and
Sujith
,
R. I.
,
2014
, “
Intermittency Route to Thermoacoustic Instability in Turbulent Combustors
,”
J. Fluid Mech.
,
756
, pp.
470
487
.10.1017/jfm.2014.468
8.
Gotoda
,
H.
,
Nikimoto
,
H.
,
Miyano
,
T.
, and
Tachibana
,
S.
,
2011
, “
Dynamic Properties of Combustion Instability in a Lean Premixed Gas-Turbine Combustor
,”
Chaos
,
21
(
1
), p.
013124
.10.1063/1.3563577
9.
Kabiraj
,
L.
,
Sujith
,
R.
, and
Wahi
,
P.
,
2012
, “
Bifurcations of Self-Excited Ducted Laminar Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
031502
.10.1115/1.4004402
10.
Kasthuri
,
P.
,
Pavithran
,
I.
,
Pawar
,
S. A.
,
Sujith
,
R. I.
,
Gejji
,
R.
, and
Anderson
,
W.
,
2019
, “
Dynamical Systems Approach to Study Thermoacoustic Transitions in a Liquid Rocket Combustor
,”
Chaos
,
29
(
10
), p.
103115
.10.1063/1.5120429
11.
Clavin
,
P.
,
Kim
,
J. S.
, and
Williams
,
F. A.
,
1994
, “
Turbulence-Induced Noise Effects on High-Frequency Combustion Instabilities
,”
Combust. Sci. Technol.
,
96
(
1–3
), pp.
61
84
.10.1080/00102209408935347
12.
Marwan
,
N.
,
Carmen Romano
,
M.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5
), pp.
237
329
.10.1016/j.physrep.2006.11.001
13.
Marwan
,
N.
,
2008
, “
A Historical Review of Recurrence Plots
,”
Eur. Phys. J. Spec. Top.
,
164
(
1
), pp.
3
12
.10.1140/epjst/e2008-00829-1
14.
Donner
,
R. V.
,
Zou
,
Y.
,
Donges
,
J. F.
,
Marwan
,
N.
, and
Kurths
,
J.
,
2010
, “
Ambiguities in Recurrence-Based Complex Network Representations of Time Series
,”
Phys. Rev. E
,
81
(
1 Pt 2
), p.
015101
.10.1103/PhysRevE.81.015101
15.
Charakopoulos
,
A.
,
Karakasidis
,
T.
,
Papanicolaou
,
P.
, and
Liakopoulos
,
A.
,
2014
, “
The Application of Complex Network Time Series Analysis in Turbulent Heated Jets
,”
Chaos
,
24
(
2
), p.
024408
.10.1063/1.4875040
16.
Murugesan
,
M.
, and
Sujith
,
R.
,
2016
, “
Complex Network Approach for Investigating Thermoacoustic Systems
,”
Ph.D. thesis
, Indian Institute of Technology, Chennai, India.https://www.researchgate.net/publication/333619072_COMPLEX_NETWORK_APPROACH_FOR_INVESTIGATING_THERMOACOUSTIC_SYSTEMS_THESIS_CERTIFICATE
17.
Murugesan
,
M.
, and
Sujith
,
R. I.
,
2015
, “
Combustion Noise is Scale-Free: Transition From Scale-Free to Order at the Onset of Thermoacoustic Instability
,”
J. Fluid Mech.
,
772
, pp.
225
245
.10.1017/jfm.2015.215
18.
Godavarthi
,
V.
,
Unni
,
V. R.
,
Gopalakrishnan
,
E. A.
, and
Sujith
,
R. I.
,
2017
, “
Recurrence Networks to Study Dynamical Transitions in a Turbulent Combustor
,”
Chaos
,
27
(
6
), p.
063113
.10.1063/1.4985275
19.
Chandh
,
A.
,
Patel
,
S.
,
Bibik
,
O.
,
Adhikari
,
S.
,
Wu
,
D.
,
Emerson
,
B.
, and
Lieuwen
,
T.
,
2021
, “
High Speed OH PLIF Measurements of Combustor Effusion Films in a High Pressure, Liquid Fueled Combustor
,”
ASME
Paper No. GT2021-59306.10.1115/GT2021-59306
20.
Chandh
,
A.
,
Kazbekov
,
A.
,
Zhang
,
A.
,
Adhikari
,
S.
,
Wu
,
D.
,
Emerson
,
B.
,
Rezvani
,
R.
,
Proscia
,
W.
,
Lieuwen
,
T.
, and
Steinberg
,
A.
,
2020
, “
Dynamics of Effusion Cooling Fluid in a Pressurized Swirl Combustor Flow
,”
ASME
Paper No. GT2020-15939.10.1115/GT2020-15939
21.
Chterev
,
I.
,
Rock
,
N.
,
Ek
,
H.
,
Emerson
,
B.
,
Seitzman
,
J.
,
Jiang
,
N.
,
Roy
,
S.
,
Lee
,
T.
,
Gord
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Simultaneous Imaging of Fuel, OH, and Three Component Velocity Fields in High Pressure, Liquid Fueled, Swirl Stabilized Flames at 5 kHz
,”
Combustion and Flame
,
186
, pp.
150
165
.10.1016/j.combustflame.2017.07.021
22.
Takens
,
F.
,
1981
, “
Detecting Strange Attractors in Turbulence
,”
Lecture Notes in Mathematics
,
Springer Verlag
,
Berlin, Germany
, p.
366
.
23.
Cao
,
L.
,
1997
, “
Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series
,”
Phys. D
,
110
(
1
), pp.
43
50
.10.1016/S0167-2789(97)00118-8
24.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), pp.
1134
1140
.10.1103/PhysRevA.33.1134
You do not currently have access to this content.