Abstract

Predicting the spray evolution using simulations requires accurate modeling of the turbulent gas-phase flow field. In this study, the high-order spectral-element method (SEM), implemented in the code Nek5000, was used to provide highly resolved solutions to the turbulent flow field. Spray modeling capabilities were implemented into the Nek5000 code. The spray is modeled in a Lagrangian–Eulerian (LE) framework, where the liquid is represented by discrete parcels of droplets. The method for coupling liquid and gas in the context of SEM is described, which allows for very fine meshes to be used without affecting the stability of the solution. Large-eddy simulations (LES) of the eight-hole ECN Spray G gasoline injector were conducted. Numerical results are compared against experimental data for liquid penetration, droplet size and gas velocity. The morphology of the multiplume spray is compared against experimental data. The effect of different spray injection inputs is analyzed. It was found that using a plume direction of 33 deg and an injection cone angle of 30 deg produced the best results overall. This work shows the applicability of SEM for spray modeling applications, where use of a high-order flow solver can help us understand the multiplume spray aerodynamics and how it leads to plume collapse under certain conditions. Results also highlight the need for tuning spray input parameters in the LE framework, even when high-fidelity gas flow solutions are possible.

References

1.
Geiger
,
J.
,
Grigo
,
M.
,
Lang
,
O.
,
Wolters
,
P.
, and
Hupperich
,
P.
,
1999
, “
Direct Injection Gasoline Engines - Combustion and Design
,”
SAE
No. 1999-01-0170.10.4271/1999-01-0170
2.
Liu
,
H.
,
Wang
,
Z.
,
Long
,
Y.
,
Xiang
,
S.
,
Wang
,
J.
, and
Fatouraie
,
M.
,
2015
, “
Comparative Study on Alcohol-Gasoline and Gasoline-Alcohol Dual-Fuel Spark Ignition (DFSI) Combustion for Engine Particle Number (PN) Reduction
,”
Fuel
,
159
, pp.
250
258
.10.1016/j.fuel.2015.06.059
3.
Sphicas
,
P.
,
Pickett
,
L. M.
,
Skeen
,
S. A.
, and
Frank
,
J. H.
,
2018
, “
Inter-Plume Aerodynamics for Gasoline Spray Collapse
,”
Int. J. Engine Res.
,
19
(
10
), pp.
1048
1067
.10.1177/1468087417740306
4.
Rachakonda
,
S. K.
,
Paydarfar
,
A.
, and
Schmidt
,
D. P.
,
2019
, “
Prediction of Spray Collapse in Multi-Hole Gasoline Direct-Injection Fuel Injectors
,”
Int. J. Engine Res.
,
20
(
1
), pp.
18
33
.10.1177/1468087418819527
5.
Guo
,
H.
,
Nocivelli
,
L.
, and
Torelli
,
R.
,
2021
, “
Numerical Study on Spray Collapse Process of ECN Spray G Injector Under Flash Boiling Conditions
,”
Fuel
, 290, p.
119961
10.1016/j.fuel.2020.119961
6.
Sphicas
,
P.
,
Pickett
,
L. M.
,
Skeen
,
S.
,
Frank
,
J.
,
Lucchini
,
T.
,
Sinoir
,
D.
,
D'Errico
,
G.
,
Saha
,
K.
, and
Som
,
S.
,
2017
, “
A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays With Plume Interaction and Collapse
,”
SAE Int. J. Fuels Lubricants
,
10
(
1
), pp.
184
201
.10.4271/2017-01-0837
7.
Deville
,
M. O.
,
Fischer
,
P. F.
,
Fischer
,
P. F.
, and
Mund
,
E. H.
,
2002
,
High-Order Methods for Incompressible Fluid Flow
, Cambridge Monographs on Applied and Computational Mathematics,
Cambridge University Press, Cambridge, UK
.
8.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.10.1016/0021-9991(84)90128-1
9.
Colmenares
,
J. D.
,
Ameen
,
M. M.
,
Wu
,
S.
, and
Patel
,
S.
,
2021
, “
Large Eddy Simulation of Turbulent Particle-Laden Jets Using the Spectral Element Method
,”
AIAA
Paper No.
2021
0635
.10.2514/6.2021-0635
10.
Colmenares F
,
J. D.
,
Ameen
,
M. M.
, and
Patel
,
S. S.
,
2020
, “
Large-Eddy Simulation of Non-Vaporizing Sprays Using the Spectral-Element Method
,”
73rd Annual Meeting of the APS Division of Fluid Dynamics
, Virtual, Nov.
22
24
.10.1016/j.ijmultiphaseflow.2022.104155
11.
Tomboulides
,
A. G.
,
Lee
,
J. C. Y.
, and
Orszag
,
S. A.
,
1997
, “
Numerical Simulation of Low Mach Number Reactive Flows
,”
J. Sci. Comput.
,
12
(
2
), pp.
139
167
.10.1023/A:1025669715376
12.
Majda
,
A.
, and
Sethian
,
J.
,
1985
, “
The Derivation and Numerical Solution of the Equations for Zero Mach Number Combustion
,”
Combust. Sci. Technol.
,
42
(
3–4
), pp.
185
205
.10.1080/00102208508960376
13.
Capecelatro
,
J.
, and
Desjardins
,
O.
,
2013
, “
An Euler-Lagrange Strategy for Simulating Particle-Laden Flows
,”
J. Comput. Phys.
,
238
, pp.
1
31
.10.1016/j.jcp.2012.12.015
14.
Ling
,
Y.
,
Balachandar
,
S.
, and
Parmar
,
M.
,
2016
, “
Inter-Phase Heat Transfer and Energy Coupling in Turbulent Dispersed Multiphase Flows
,”
Phys. Fluids
,
28
(
3
), p.
033304
.10.1063/1.4942184
15.
Zwick
,
D.
, and
Balachandar
,
S.
,
2020
, “
A Scalable Euler-Lagrange Approach for Multiphase Flow Simulation on Spectral Elements
,”
Int. J. High Performance Comput. Appl.
,
34
(
3
), pp.
316
339
.10.1177/1094342019867756
16.
Wilke
,
C. R.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
.10.1063/1.1747673
17.
Alkandry
,
H.
,
Boyd
,
I.
, and
Martinm
,
A.
,
2013
, “
Comparison of Models for Mixture Transport Properties for Numerical Simulations of Ablative Heat-Shields
,”
AIAA
Paper No. 2013-0303. 10.2514/6.2013-0303
18.
Reitz
,
R. D.
,
1987
, “
Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomization Spray Technol.
,
3
, pp.
309
337
.https://uwmadison.app.box.com/v/AandS
19.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.10.1016/0017-9310(89)90043-4
20.
Yuen
,
M. C.
, and
Chen
,
L. W.
,
1976
, “
On Drag of Evaporating Liquid Droplets
,”
Combust. Sci. Technol.
,
14
(
4–6
), pp.
147
154
.10.1080/00102207608547524
21.
Liu
,
A. B.
, and
Reitz
,
R. D.
,
1993
, “
Mechanisms of Air-Assisted Liquid Atomization
,”
Atomization Sprays
,
3
(
1
), pp.
55
75
.10.1615/AtomizSpr.v3.i1.30
22.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,”
SAE
Paper
No. 872089
.10.4271/872089
23.
Xin
,
J.
,
Ricart
,
L.
, and
Reitz
,
R. D.
,
1998
, “
Computer Modeling of Diesel Spray Atomization and Combustion
,”
Combust. Sci. Technol.
,
137
(
1–6
), pp.
171
194
.10.1080/00102209808952050
24.
Fischer
,
P. F.
,
Lottes
,
J. W.
, and
Kerkemeier
,
S. G.
,
2019
, “
Nek5000 Version 19.0
,” accessed Apr. 1, 2021, https://nek5000.mcs.anl.gov
25.
Patel
,
S.
,
Fischer
,
P.
,
Min
,
M.
, and
Tomboulides
,
A.
,
2019
, “
A Characteristic-Based Spectral Element Method for Moving-Domain Problems
,”
J. Sci. Comput.
,
79
(
1
), pp.
564
592
.10.1007/s10915-018-0876-6
26.
Cohen
,
S. D.
,
Hindmarsh
,
A. C.
, and
Dubois
,
P. F.
,
1996
, “
CVODE, a Stiff/Nonstiff ODE Solver in C
,”
Comput. Phys.
,
10
(
2
), pp.
138
143
.10.1063/1.4822377
27.
Hindmarsh
,
A. C.
,
Brown
,
P. N.
,
Grant
,
K. E.
,
Lee
,
S. L.
,
Serban
,
R.
,
Shumaker
,
D. E.
, and
Woodward
,
C. S.
,
2005
, “
SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,”
ACM Trans. Math. Software (TOMS)
,
31
(
3
), pp.
363
396
.10.1145/1089014.1089020
28.
Fischer
,
P.
, and
Mullen
,
J.
,
2001
, “
Filter-Based Stabilization of Spectral Element Methods
,”
C. R. de L'Academie Des Sci. Ser. I Math.
,
332
(
3
), pp.
265
270
.10.1016/S0764-4442(00)01763-8
29.
Stolz
,
S.
,
Adams
,
N. A.
, and
Kleiser
,
L.
,
2001
, “
An Approximate Deconvolution Model for Large-Eddy Simulation With Application to Incompressible Wall-Bounded Flows
,”
Phys. Fluids
,
13
(
4
), pp.
997
1015
.10.1063/1.1350896
30.
Schlatter
,
P.
,
Stolz
,
S.
, and
Kleiser
,
L.
,
2006
, “
Analysis of the SGS Energy Budget for Deconvolution- and Relaxation-Based Models in Channel Flow
,”
Direct Large-Eddy Simul. VI
, 10(
1
), pp.
135
142
. 10.1007/978-1-4020-5152-2
31.
Negi
,
P. S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2017
, “
A Re-Examination of Filter-Based Stabilization for Spectral-Element Methods
,” Report No. 1987.
32.
Zwick
,
D.
,
2019
, “
ppiclF: A Parallel Particle-In-Cell Library in Fortran
,”
J. Open Source Software
,
4
(
37
), p.
1400
.10.21105/joss.01400
33.
Offermans
,
N.
,
2017
, “
Gather-Scatter Library in Nek5000: Documentation of the GS Library Developed by James Lottes
,” Report No. 2.
34.
Sandia National Laboratories
,
2021
, “
Engine Combustion Network
,” Sandia National Laboratories, Albuquerque, NM, accessed Apr. 1, 2021, https://ecn.sandia.gov
35.
Arienti
,
M.
,
Wenzel
,
E. A.
,
Sforzo
,
B. A.
, and
Powell
,
C. F.
,
2021
, “
Effects of Detailed Geometry and Real Fluid Thermodynamics on Spray G Atomization
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
3277
3285
.10.1016/j.proci.2020.06.039
36.
Wenzel
,
E. A.
, and
Arienti
,
M.
,
2021
, “
A New Approach for the Modeling and Simulation of Liquid/Vapor Phase Change at Engine-Relevant Conditions
,”
ILASS-Americas 31st Annual Conference on Liquid Atomization and Spray Systems
, Virtual, May 16–19, pp.
1
11
.https://www.osti.gov/servlets/purl/1862773
37.
Dong
,
S.
,
Karniadakis
,
G. E.
, and
Chryssostomidis
,
C.
,
2014
, “
A Robust and Accurate Outflow Boundary Condition for Incompressible Flow Simulations on Severely-Truncated Unbounded Domains
,”
J. Comput. Phys.
,
261
, pp.
83
105
.10.1016/j.jcp.2013.12.042
38.
Hwang
,
J.
,
Weiss
,
L.
,
Karathanassis
,
I. K.
,
Koukouvinis
,
P.
,
Pickett
,
L. M.
, and
Skeen
,
S. A.
,
2020
, “
Spatio-Temporal Identification of Plume Dynamics by 3D Computed Tomography Using Engine Combustion Network Spray G Injector and Various Fuels
,”
Fuel
,
280
, p.
118359
.10.1016/j.fuel.2020.118359
39.
Li
,
H.
,
Rutland
,
C. J.
,
Hernández Pérez
,
F. E.
, and
Im
,
H. G.
,
2021
, “
Large-Eddy Spray Simulation Under Direct-Injection Spark-Ignition Engine-Like Conditions With an Integrated Atomization/Breakup Model
,”
Int. J. Engine Res.
,
22
(
3
), pp.
731
754
.10.1177/1468087419881867
40.
Payri
,
R.
,
Gimeno
,
J.
,
Marti-Aldaravi
,
P.
, and
Vaquerizo
,
D.
,
2015
, “
Momentum Flux Measurements on an ECN GDi Injector
,”
SAE
Technical Paper No. 2015-01-1893.10.4271/2015-01-1893
41.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
, and
Som
,
S.
,
2015
, “
An Investigation of Grid Convergence for Spray Simulations Using an LES Turbulence Model
,”
SAE
Paper No. 2015-01-0768, Vol.
2
.10.4271/2013-01-1083
42.
Parrish
,
S.
, “
Gasoline Spray (Spray G) Drop Size Measurements
,” ECN 3 Workshop Proceedings, Engine Combustion Network, accessed Dec. 16, 2022, https://ecn.sandia.gov/ecn-workshop/ecn3-proceedings/
43.
Paredi
,
D.
,
Lucchini
,
T.
,
D'Errico
,
G.
,
Onorati
,
A.
,
Pickett
,
L.
, and
Lacey
,
J.
,
2020
, “
Validation of a Comprehensive Computational Fluid Dynamics Methodology to Predict the Direct Injection Process of Gasoline Sprays Using Spray G Experimental Data
,”
Int. J. Engine Res.
,
21
(
1
), pp.
199
216
.10.1177/1468087419868020
You do not currently have access to this content.