Abstract

This study investigates the potential of “Powdrogen” plants for blue hydrogen and decarbonized electric power production, conceived to operate flexibly depending on the electricity price and to increase the capacity factor of the hydrogen production and CO2 separation units. The hydrogen production is based on fired tubular reforming or autothermal reforming technologies with precombustion CO2 capture by a methyl diethanolamine (MDEA) process. The power island is based on a combined cycle with an H2-fired gas turbine and a triple pressure reheat heat recovery steam generator (HRSG). The analysis considers three main plant operating modes: hydrogen mode (reformer at full load with hydrogen export and combined cycle off) and power mode (reformer at full load with all hydrogen burned in the combined cycle), plus an intermediate polygeneration mode, producing both hydrogen and electricity. The possibility of integrating the HRSG and the reformer heat recovery process to feed a single steam turbine has been explored to allow keeping the steam turbine hot also in hydrogen operating mode. The economic analysis investigates the competitivity of the plant for different operating hours in hydrogen and power modes. Results suggest that these plants are likely to be a viable way to produce flexibly low-carbon hydrogen and electricity following the market demand.

References

1.
Sharma, A.,
2021
, “
COP26 The Glasgow Climate Pact - Key Outcomes From COP26
,” UNFCCC, Glasgow, UK.https://ukcop26.org/the-conference/cop26-outcomes/
2.
Rogelj
,
J.
,
Shindell
,
D.
,
Jiang
,
K.
,
Fifita
,
S.
,
Forster
,
P.
,
Ginzburg
,
V.
,
Handa
,
C.
, et al.,
2018
, “
Mitigation Pathways Compatible With 1.5 °C in the Context of Sustainable Development
,”
Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change
, V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, et al., (eds.), Cambridge University Press, Cambridge, UK and New York, pp.
93
174
.10.1017/9781009157940.004
3.
Abánades
,
A.
,
2018
, “
Natural Gas Decarbonization as Tool for Greenhouse Gases Emission Control
,”
Front. Energy Res.
,
6
(
47
), pp.
1
7
.10.3389/fenrg.2018.00047
4.
Taibi
,
E.
,
Nikolakakis
,
T.
,
Gutierrez
,
L.
, and
Fernandez
,
C.
,
2018
,
Power System Flexibility for the Energy Transition: Part 1 Overview for Policy Makers
,
IRENA, Renewable Energy Agency, International
, Abu Dhabi, UAE.
5.
Welch
,
M.
,
2019
, “
Decarbonizing Power Generation Through the Use of Hydrogen as a Gas Turbine Fuel
,”
ASME
Paper No. POWER2019-1821.10.1115/POWER2019-1821
6.
Rubin
,
E. S.
, and
Zhai
,
H.
,
2012
, “
The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants
,”
Environ. Sci. Technol.
,
46
(
6
), pp.
3076
3084
.10.1021/es204514f
7.
ZEP
,
2021
,
The Crucial Role of Low Carbon Hydrogen Production to Achieve Europe's Climate Ambition: A Technical Assessment
,
ZEP
,
Brussels, Belgium
.
8.
Bauer
,
C.
,
Treyer
,
K.
,
Antonini
,
C.
,
Bergerson
,
J.
,
Gazzani
,
M.
,
GenCEr
,
E.
, and
Gibbins
,
J.
, et al.,
2022
, “
On the Climate Impacts of Blue Hydrogen
,”
Sustainable Energy Fuels
,
6
(
1
), pp.
66
75
.10.1039/D1SE01508G
9.
IEA
,
2021
, “Hydrogen,”
IEA
,
Paris
, France.
10.
IEAGHG,
2017
, “
Reference Data and Supporting Literature Reviews for SMR Based Hydrogen Production With CCS
,”
IEAGHG
, Cheltenham, UK, Report No.
TR3
.https://www.researchgate.net/publication/320767911_Reference_Data_and_Supporting_Literature_Reviews_for_SMR_based_Hydrogen_Production_with_CCS
11.
Dybkjær
,
I.
,
Rostrup-Nielsen
,
T.
, and
Aasberg-Petersen
,
K.
,
2006
, “
Synthesis Gas and Hydrogen
,”
Encyclopaedia of Hydrocarbons Refining and Petrochemicals
,
Beccari
,
M.
, and
Romano
,
U.
, eds., Vol.
2
,
ENI
, Rome, Italy, pp.
469
487
.
12.
Rostrup-Nielsen
,
J. R.
, and
Rostrup-Nielsen
,
T.
,
2007
, “
Large-Scale Hydrogen Production
,”
Report Based on Keynote Lecture Presented at the Sixth World Congress of Chemical Engineering
, Melbourne, Australia, Sept. 23–27,
Haldor Topsoe
, p.
13
.10.1023/A:1020163012266
13.
Aasberg-Petersen
,
K.
,
Dybkjær
,
I.
,
Ovesen
,
C. V.
,
Schjødt
,
N. C.
,
Sehested
,
J.
, and
Thomsen
,
S. G.
,
2011
, “
Natural Gas to Synthesis Gas e Catalysts and Catalytic Processes
,”
J. Nat. Gas Sci. Eng.
,
3
(
2
), pp.
423
459
.10.1016/j.jngse.2011.03.004
14.
Voldsund
,
M.
,
Jordal
,
K.
, and
Anantharaman
,
R.
,
2016
, “
Hydrogen Production With CO2 Capture
,”
Int. J. Hydrogen Energy
,
41
(
9
), pp.
4969
4992
.10.1016/j.ijhydene.2016.01.009
15.
Romano
,
M. C.
,
Chiesa
,
P.
, and
Lozza
,
G.
,
2010
, “
Pre-Combustion CO2 Capture From Natural Gas Power Plants, With ATR and MDEA Processes
,”
Int. J. Greenhouse Gas Control
,
4
(
5
), pp.
785
797
.10.1016/j.ijggc.2010.04.015
16.
Moioli
,
S.
,
Pellegrini
,
L. A.
,
Romano
,
M. C.
, and
Giuffrida
,
A.
,
2017
, “
Pre-Combustion CO2 Removal in IGCC Plant by MDEA Scrubbing: Modifications to the Process Flowsheet for Energy Saving
,”
Energy Procedia
,
114
, pp.
2136
2145
.10.1016/j.egypro.2017.03.1349
17.
Meissner
,
R. E.
, and
Wagner
,
U.
,
1983
, “
Low-Energy Process Recovers CO2
,”
Oil Gas J.
,
81
(
5
), pp.
55
58
.https://www.osti.gov/biblio/5800544
18.
DOE/NETL
,
2010
, “
Assessment of Hydrogen Production With CO2 Capture Volume 1: Baseline State-of-the-Art Plants
,”
National Energy Technology Laboratory
, Pittsburgh, PA, Report No.
DOE/NETL-2011/1434
.10.2172/1767148
19.
Tagliabue
,
M.
, and
Delnero
,
G.
,
2008
, “
Optimization of a Hydrogen Purification System
,”
Int. J. Hydrogen Energy
,
33
(
13
), pp.
3496
3498
.10.1016/j.ijhydene.2008.04.055
20.
Yang
,
S. I.
,
Choi
,
D. Y.
,
Jang
,
S. C.
,
Kim
,
S. H.
, and
Choi
,
D. K.
,
2008
, “
Hydrogen Separation by Multi-Bed Pressure Swing Adsorption of Synthesis Gas
,”
Adsorption
,
14
(
4–5
), pp.
583
590
.10.1007/s10450-008-9133-x
21.
Aspentech
,
2017
,
Aspen Plus User Models
,
Aspen Technology
,
Bedford, MA
.
22.
Renon
,
H.
, and
Prausnitz
,
J. M.
,
1968
, “
Local Compositions in Thermodynamics Excess Functions for Liquid Mixtures
,”
AIChE J.
,
14
(
1
), pp.
135
144
.10.1002/aic.690140124
23.
Redlich
,
O.
, and
Kwong
,
J. N.
,
1949
, “
On the Thermodynamics of Solutions. An Equation of State. Fugacities of Gaseous Solutions
,”
Chem. Rev.
,
44
(
1
), pp.
233
244
.10.1021/cr60137a013
24.
Chiesa
,
P.
,
Consonni
,
S.
,
Lozza
,
G.
, and
Macchi
,
E.
,
1993
, “
Predicting the Ultimate Performance of Advanced Power Cycles Based on Very High Temperature Gas Turbine Engines
,”
ASME
Paper No. 93-GT-223.10.1115/93-GT-223
25.
Chiesa
,
P.
, and
Macchi
,
E.
,
2004
, “
A Thermodynamic Analysis of Different Options to Break 60% Electric Efficiency in Combined Cycle Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
770
785
.10.1115/1.1771684
26.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
27.
Macchi
,
E.
, and
Perdichizzi
,
A.
,
1977
, “
Theoretical Prediction of the Off-Design Performance of Axial-Flow Turbines
,”
Proceedings of XXXII ATI National Meeting
,
II
, Rome, Italy, Sept. 20–23, pp.
1867
1896
.
28.
Giostri
,
A.
,
Saccilotto
,
C.
,
Macchi
,
E.
, and
Manzolini
,
G.
,
2012
, “
A Numerical Model for Off-Design Performance Calculation of Parabolic Trough Based Power Plants
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011003
.10.1115/1.4005105
29.
Carrara
,
A.
,
Perdichizzi
,
A.
, and
Barigozzi
,
G.
,
2010
, “
Simulation of an Hydrogen Production Steam Reforming Industrial Plant for Energetic Performance Prediction
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3499
3508
.10.1016/j.ijhydene.2009.12.156
30.
Campanari
,
S.
,
Chiesa
,
P.
, and
Manzolini
,
G.
,
2010
, “
CO2 Capture From Combined Cycles Integrated With Molten Carbonate Fuel Cells
,”
Int. J. Greenhouse Gas Control
,
4
(
3
), pp.
441
451
.10.1016/j.ijggc.2009.11.007
31.
IEAGHG
,
2017
, “
Techno-Economic Evaluation of SMR Based Standalone (Merchant) Plant With CCS
,”
IEAGHG
, Cheltenham, UK, Report No.
2017-02
.https://www.researchgate.net/publication/320766380_Techno-Economic_Evaluation_of_SMR_Based_Standalone_Merchant_Plant_with_CCS
32.
Lewis
,
E.
,
McNaul
,
S.
,
Jamieson
,
M.
,
Henriksen
,
M. S.
,
Scott Matthews
,
S.
,
White
,
J.
,
Walsh
,
L
, et al.,
2022
,. “
Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies
,”
DOE/NETL, National Energy Technology Laboratory (NETL)
, Report No. DOE/NETL-2022/3241 10.2172/1862910.
33.
Jenkins, S., 2021, “
2020 Annual CEPCI Average Value,
” Chemical Engineering, New York, accessed Nov. 1, 2022, https://www.chemengonline.com/2020-annual-cepci-average-value/
You do not currently have access to this content.