Abstract

Iso-octane is widely recognized as a prominent candidate to represent the oxidation of iso-alkanes within jet fuel and gasoline surrogates. This work evaluated a chemical kinetic mechanism for iso-octane focusing on the model's capability to predict the formation of polycyclic aromatic hydrocarbons (PAHs). As the model is intended to be further coupled with soot models, the chemical kinetic mechanism must supply good predictability of the formation and consumption of PAHs considered as major soot precursors. A first validation of the iso-octane submodel as incorporated within ESTiMatE-Mech, using experimental data from literature, reveals the need to improve the submodel. Considerable deviations were observed in the prediction of the PAHs, although concentration profiles of major species and fundamental combustion properties, here ignition delay time and laminar flame speed, were accurately predicted. Through rate of production and sensitivity analyses of the mechanism, nine reactions were identified to have a strong impact on the (over) prediction of the PAHs. These reactions have been modified based on information gathered from literature resulting in an updated version of the mechanism called ESTiMatE-Mech_mod. Simulation results with this modified mechanism showed that this updated mechanism is now capable of predicting well the targeted PAHs, while retaining the good initial prediction of the major species concentration profiles as well as of laminar flame speeds and ignition delay times.

References

1.
ASTM
,
2021
, “
ASTM D7566-21: Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons
,”
ASTM International
,
West Conshohocken, PA
.
2.
ACARE
,
2017
, “
Strategic Research & Innovation Agenda, the Goals of Flightpath 2050
,”
ACARE
,
Blagnac, France
, accessed Dec. 17, 2021, https://www.acare4europe.org/acare-goals/
3.
Bond
,
T. C.
,
Doherty
,
S. J.
,
Fahey
,
D. W.
,
Forster
,
P. M.
,
Berntsen
,
T.
,
DeAngelo
,
B. J.
, et al.,
2013
, “
Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment
,”
J. Geophys. Res. Atmos.
,
118
(
11
), pp.
5380
5552
.10.1002/jgrd.50171
4.
Martin
,
J. W.
,
Salamanca
,
M.
, and
Kraft
,
M.
,
2022
, “
Soot Inception: Carbonaceous Nanoparticle Formation in Flames
,”
Prog. Energ. Combust.
,
88
, p.
100956
.10.1016/j.pecs.2021.100956
5.
Kalbhor
,
A.
, and
Oijen
,
J. V.
,
2021
, “
An Assessment of the Sectional Soot Model and FGM Tabulated Chemistry Coupling in Laminar Flame Simulations
,”
Combust. Flame
,
229
, p.
111381
.10.1016/j.combustflame.2021.02.027
6.
Eberle
,
C.
,
Gerlinger
,
P.
, and
Aigner
,
M.
,
2017
, “
A Sectional PAH Model With Reversible PAH Chemistry for CFD Soot Simulations
,”
Combust. Flame
,
179
, pp.
63
73
.10.1016/j.combustflame.2017.01.019
7.
Ferraro
,
F.
,
Russo
,
C.
,
Schmitz
,
R.
,
Hasse
,
C.
, and
Sirignano
,
M.
,
2021
, “
Experimental and Numerical Study on the Effect of Oxymethylene Ether-3 (OME3) on Soot Particle Formation
,”
Fuel
,
286
, p.
119353
.10.1016/j.fuel.2020.119353
8.
Salenbauch
,
S.
,
Hasse
,
C.
,
Vanni
,
M.
, and
Marchisio
,
D. L.
,
2019
, “
A Numerically Robust Method of Moments With Number Density Function Reconstruction and Its Application to Soot Formation, Growth and Oxidation
,”
J. Aerosol Sci.
,
128
, pp.
34
49
.10.1016/j.jaerosci.2018.11.009
9.
Slavinskaya
,
N. A.
,
Zizin
,
A.
, and
Aigner
,
M.
,
2010
, “
On Model Design of a Surrogate Fuel Formulation
,”
ASME J. Eng. Gas Turbine Power
,
132
(
11
), p.
111501
.10.1115/1.4000593
10.
Kathrotia
,
T.
,
Richter
,
S.
,
Naumann
,
C.
,
Slavinskaya
,
N.
,
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2018
, “
Reaction Model Development for Synthetic Jet Fuels: Surrogate Fuels as a Flexible Tool to Predict Their Performance
,”
ASME
Paper No. GT2018-76997.10.1115/GT2018-76997
11.
ESTiMatE – Emissions Soot Model,
2020
, “
Clean Sky 2 Project, Joint Undertaking Under the European Union's Horizon 2020 Research and Innovation Programme, Grant Agreement No. 821418
,” ESTiMatE – Emissions Soot Model, accessed Dec. 17, 2021, https://estimate-project.eu/
12.
Kumar
,
R.
,
Singhal
,
A.
, and
Kumar
,
S.
,
2021
, “
Laminar Burning Velocity Measurements of Iso-Octane + Air Mixtures at Higher Unburnt Mixture Temperatures
,”
Fuel
,
288
, p.
119652
.10.1016/j.fuel.2020.119652
13.
Liu
,
Y.
,
Jia
,
M.
,
Xie
,
M.
, and
Pang
,
B.
,
2013
, “
Improvement on a Skeletal Chemical Kinetic Model of Iso-Octane for Internal Combustion Engine by Using a Practical Methodology
,”
Fuel
,
103
, pp.
884
891
.10.1016/j.fuel.2012.07.046
14.
Atef
,
N.
,
Kukkadapu
,
G.
,
Mohamed
,
S. Y.
,
Rashidi
,
M. A.
,
Banyon
,
C.
,
Mehl
,
M.
,
Heufer
,
K. A.
,
Nasir
,
E. F.
, et al.,
2017
, “
A Comprehensive Iso-Octane Combustion Model With Improved Thermochemistry and Chemical Kinetics
,”
Combust. Flame
,
178
, pp.
111
134
.10.1016/j.combustflame.2016.12.029
15.
Bakali
,
A. E.
,
Delfau
,
J.
, and
Vovelle
,
C.
,
1998
, “
Experimental Study of 1 Atmosphere, Rich, Premixed n-Heptane and Iso-Octane Flames
,”
Combust. Sci. Technol.
,
140
(
1–6
), pp.
69
91
.10.1080/00102209808915768
16.
Dagaut
,
P.
,
Reuillon
,
M.
, and
Cathonnet
,
M.
,
1993
, “
High Pressure Oxidation of Liquid Fuels From Low to High Temperature. 1. n-Heptane and Iso-Octane
,”
Combust. Sci. Technol.
,
95
(
1–6
), pp.
233
260
.10.1080/00102209408935336
17.
Malewicki
,
T.
,
Comandini
,
A.
, and
Brezinsky
,
K.
,
2013
, “
Experimental and Modeling Study on the Pyrolysis and Oxidation of Iso-Octane
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
353
360
.10.1016/j.proci.2012.06.137
18.
Zhao
,
X.
,
Xu
,
L.
,
Chen
,
C.
,
Chen
,
M.
,
Ying
,
Y.
, and
Liu
,
D.
,
2021
, “
Experimental and Numerical Study on Sooting Transition Process in Iso-Octane Counterflow Diffusion Flames: Diagnostics and Combustion Chemistry
,”
J. Energy Inst.
,
98
, pp.
282
293
.10.1016/j.joei.2021.07.004
19.
Vlavakis
,
P.
, Loukou, A., and
Trimis
,
D.
, 2022, “Experimental and Numerical Investigation on Flame Structure and PAH Formation of Iso-Octane Non-Premixed Counterflow Flames,” Combust. Flame, epub.
20.
Ramirez-Hernandez
,
A.
,
Kathrotia
,
T.
,
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2021
, “
Reaction Model Development of Selected Aromatics as Relevant Molecules of a Kerosene Surrogate—The Importance of m-Xylene Within the Combustion of 1,3,5-Trimethylbenzene
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021002
.10.1115/1.4052206
21.
Richter
,
S.
,
Raida
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2016
, “
Measurement of the Laminar Burning Velocity of Neat Jet Fuel Components
,” Proceedings of the World Congress on Momentum, Heat and Mass Transfer (
MHMT'16
),
Prague, Czech Republic
, Apr. 4–5, pp.
1
5
.10.11159/csp16.115
22.
Kathrotia
,
T.
,
Oßwald
,
P.
,
Naumann
,
C.
,
Richter
,
S.
, and
Köhler
,
M.
,
2021
, “
Combustion Kinetics of Alternative Jet Fuels, Part-II: Reaction Model for Fuel Surrogate
,”
Fuel
,
302
, p.
120736
.10.1016/j.fuel.2021.120736
23.
Kathrotia
,
T.
,
Oßwald
,
P.
,
Zinsmeister
,
J.
,
Methling
,
T.
, and
Köhler
,
M.
,
2021
, “
Combustion Kinetics of Alternative Jet Fuels, Part-III: Fuel Modeling and Surrogate Strategy
,”
Fuel
,
302
, p.
120737
.10.1016/j.fuel.2021.120737
24.
Goodwin
,
D.
,
Moffat
,
H.
, and
Speth
,
R.
,
2016
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.2.1, Cantera, accessed Dec. 17, 2021, http://www.cantera.org
25.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” University of Southern California, Los Angeles, CA, accessed Dec. 17, 2021, http://ignis.usc.edu/USC_Mech_II.htm
26.
Senosiain
,
J. P.
, and
Miller
,
J. A.
,
2007
, “
The Reaction of n- and i-C4H5 Radicals With Acetylene
,”
J. Phys. Chem. A
,
111
(
19
), pp.
3740
3747
.10.1021/jp0675126
27.
Wang
,
Y.
,
Raj
,
A.
, and
Chung
,
S. H.
,
2013
, “
A PAH Growth Mechanism and Synergistic Effect on PAH Formation in Counterflow Diffusion Flames
,”
Combust. Flame
,
160
(
9
), pp.
1667
1676
.10.1016/j.combustflame.2013.03.013
28.
Valencia-López
,
A. M.
,
Bustamante
,
F.
,
Loukou
,
A.
,
Stelzner
,
B.
,
Trimis
,
D.
,
Frenklach
,
M.
, and
Slavinskaya
,
N. A.
,
2019
, “
Effect of Benzene Doping on Soot Precursors Formation in Non-Premixed Flames of Producer Gas (PG)
,”
Combust. Flame
,
207
, pp.
265
280
.10.1016/j.combustflame.2019.05.044
29.
Jin
,
H.
,
Xing
,
L.
,
Hao
,
J.
,
Yang
,
J.
,
Zhang
,
Y.
,
Cao
,
C.
,
Pan
,
Y.
, and
Farooq
,
A.
,
2019
, “
A Chemical Kinetic Modeling Study of Indene Pyrolysis
,”
Combust. Flame
,
206
, pp.
1
20
.10.1016/j.combustflame.2019.04.040
You do not currently have access to this content.