Abstract

As an evolutional concept of aero engine, the variable cycle engine (VCE) can adjust the thermodynamic cycle via working on different modes to meet different flight missions. These working modes lead to the performance and stability of variable geometries for mode switching under different mission profiles. This paper aims at the performance prediction under different working conditions on the key variable geometry, namely, the forward variable area bypass injector (FVABI). The rotary and translating mathematical calculation models are established and validated via the three-dimensional numerical simulation. It considers the choked flow state caused by area change at FVABI and mode selector valve (MSV). The variable geometry schedules at the typical subsonic cruise working condition are analyzed based on the zero-dimensional engine performance model. It verifies the efficiency of the improved zero-dimensional bypass mixing calculation model to predict the mixing characteristics of the FVABI on different operating modes. The maximum error of the total pressure recovery coefficient and the ejection ratio is 2.3% and 6.2%, respectively. This performance prediction method can lay foundations for the variable geometry design and performance optimization of the VCE under typical mission profiles.

References

1.
Vyvey
,
P.
,
Bosschaerts
,
W.
,
Fernandez Villace
,
V.
, and
Paniagua
,
G.
,
2011
, “
Study of an Airbreathing Variable Cycle Engine
,”
AIAA
Paper No. AIAA-2011-5758.10.2514/6.AIAA-2011-5758
2.
Lyu
,
Y.
,
Hailong
,
T.
, and
Chen
,
M.
,
2016
, “
A Study on Combined Variable Geometries Regulation of Adaptive Cycle Engine During Throttling
,”
Appl. Sci.
,
6
(
12
), p.
374
.10.3390/app6120374
3.
Hong
,
Z.
,
Wang
,
Z.
,
Zhang
,
X.
, and
Cao
,
M.
,
2017
, “
Optimization of Variable Cycle Engines by Using an Improved Differential Evolution
,”
AIAA
Paper, No. AIAA-2017-4899.10.2514/6.AIAA-2017-4899
4.
Vdoviak
,
J. W.
, and
Ebacher
,
J. A.
,
1979
, “
VCE Test Bed Engine for Supersonic Cruise Research
,” NASA, Washington, DC, Report No.
NASA CP-2108
.https://ntrs.nasa.gov/citations/19810009472
5.
French
,
M.
, and
Allen
,
C.
,
1981
, “
NASA VCE Test Bed Engine Aerodynamic Performance Characteristics and Test Results
,”
AIAA
Paper No. AIAA-1981-1594.10.2514/6.AIAA-1981-1594
6.
Vdoviak
,
J.
,
Knott
,
P.
, and
Ebacker
,
J.
,
1981
, “
Aerodynamic/Acoustic Performance of YJ101/Double Bypass VCE With Coannular Plug Nozzle
,” NASA, Washington, DC, Report No.
NASA-CP-159869
.https://ntrs.nasa.gov/api/citations/19810009323/downloads/19810009323.pdf
7.
Kurzke
,
J.
, and
Halliwell
,
I.
,
2018
, “
Propulsion and Power: An Exploration of Gas Turbine Performance Modeling
,” Springer, Cham, Switzerland, p.
355
.
8.
Al-Hamdan
,
Q.
, and
Ebaid
,
M.
,
2006
, “
Modeling and Simulation of a Gas Turbine Engine for Power Generation
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
302
311
.10.1115/1.2061287
9.
Kulikov
,
G.
, and
Thompson
,
H.
,
2004
, “
Dynamic Modelling of Gas Turbines: Identification, Simulation, Condition Monitoring and Optimal Control
,” Springer, London, UK.
10.
Wang
,
S.
,
Wang
,
J.
,
Jiang
,
B.
, and
He
,
X.
,
2016
, “
Research of Variable Cycle Engine Modeling Technologies
,” Proceedings of Chinese intelligent Systems Conference
(CISC)
,
Springer
Singapore
, Nanjing, China, pp.
267
273
.10.1007/978-981-10-2338-5_26
11.
Wang
,
Y.
,
Zhang
,
P.
,
Li
,
Q.
, and
Huang
,
X.
,
2014
, “
Research and Validation of Variable Cycle Engine Modeling Method
,”
J. Aerosp. Power
,
29
(
11
), pp.
2643
2651
.
12.
Zheng
,
J.
,
Tang
,
H.
,
Chen
,
M.
, and
Yin
,
F.
,
2018
, “
Equilibrium Running Principle Analysis on an Adaptive Cycle Engine
,”
Appl. Therm. Eng.
,
132
, pp.
393
409
.10.1016/j.applthermaleng.2017.12.102
13.
Galindo
,
J.
,
Serrano
,
J. R.
,
García-Cuevas
,
L.
, and
Medina
,
N.
,
2021
, “
Using a CFD Analysis of the Flow Capacity in a Twin-Entry Turbine to Develop a Simplified Physics-Based Model
,”
Aerosp. Sci. Technol.
,
112
(
5
), p.
106623
.10.1016/j.ast.2021.106623
14.
Salvador
,
F. J.
,
Carreres
,
M.
,
García-Tíscar
,
J.
, and
Belmar-Gil
,
M.
,
2021
, “
Modal Decomposition of the Unsteady Non-Reactive Flow Field in a Swirl-Stabilized Combustor Operated by a Lean Premixed Injection System
,”
Aerosp. Sci. Technol.
,
112
(
1
), p.
106622
.10.1016/j.ast.2021.106622
15.
Visser
,
W. P. J.
,
Kogenhop
,
O.
, and
Oostveen
,
M.
,
2006
, “
A Generic Approach for Gas Turbine Adaptive Modeling
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
13
19
.10.1115/1.1995770
16.
Connolly
,
J.
,
Friedlander
,
D.
, and
Kopasasakis
,
G.
,
2014
, “
Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration Into a Variable Cycle Engine Model
,”
AIAA
Paper No. AIAA-2014-3687.10.2514/6.AIAA-2014-3687
17.
Turner
,
M.
,
Reed
,
J.
,
Ryder
,
R.
, and
Veres
,
J.
,
2004
, “
Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed Into Mini-Maps for a Zero-D Cycle Simulation
,”
ASME
Paper No. GT2004-53956.10.1115/GT2004-53956
18.
Claus
,
R.
,
Townsend
,
S.
,
Lavelle
,
T.
,
Naiman
,
C.
, and
Tuner
,
M.
,
2006
, “
A Case Study of High Fidelity Engine System Simulation
,”
AIAA
Paper No. AIAA-2006-4971.10.2514/6.AIAA-2006-4971
19.
Song
,
F.
,
Zhou
,
L.
,
Wang
,
Z.
,
Lin
,
Z.
, and
Shi
,
J.
,
2021
, “
Integration of High-Fidelity Model of Forward Variable Area Bypass Injector Into Zero-Dimensional Variable Cycle Engine Model
,”
Chin. J. Aeronaut.
,
34
(
8
), pp.
1
15
.10.1016/j.cja.2020.10.004
20.
Liu
,
B.
,
Wang
,
R.
, and
Yu
,
X.
,
2020
, “
On the Mode Transition of a Double Bypass Variable Cycle Compression System
,”
Aerosp. Sci. Technol.
,
98
, p.
105743
.10.1016/j.ast.2020.105743
21.
Liu
,
B.
,
Jia
,
S.
, and
Yu
,
X.
,
2021
, “
An Integrated Throughflow Method for the Performance Analysis of Variable Cycle Compression Systems
,”
Int. J. Turbo Jet-Engines
,
38
(
3
), pp.
245
261
.10.1515/tjj-2018-0010
22.
Wang
,
R.
,
Liu
,
B.
,
Yu
,
X.
, and
An
,
G.
,
2021
, “
The Exploration of Bypass Matching Limitation and Mechanisms in a Double Bypass Engine Compression System
,”
Aerosp. Sci. Technol.
,
119
, p.
107225
.10.1016/j.ast.2021.107225
23.
Xu
,
Z.
,
Li
,
M.
,
Tang
,
H.
, and
Chen
,
M.
,
2022
, “
A Multi-Fidelity Simulation Method Research on Front Variable Area Bypass Injector of an Adaptive Cycle Engine
,”
Chin. J. Aeronaut.
,
35
(
4
), pp.
202
219
.10.1016/j.cja.2021.08.034
24.
Liu
,
B.
,
Wang
,
R.
,
Ling
,
C.
,
Yu
,
X.
,
Wang
,
J.
, and
An
,
G.
,
2021
, “
A CFD Model for Bypass Flow in Variable Cycle Engine Compression Systems and Criterion to Predict Flow Recirculation During Mode Transition
,”
J. Propul. Technol.
,
42
(
9
), pp.
1976
1984
.
25.
Huang
,
G.
,
Huang
,
G.
,
Xia
,
C.
, and
Xiao
,
S.
,
2021
, “
Experiment and Simulation of Simplified Model of Front Variable Area Bypass Injector of Variable Cycle Engine
,”
J. Propul. Technol.
,
42
(
3
), pp.
505
512
.
26.
Clark
,
R. A.
,
Shi
,
M.
,
Gladin
,
J.
, and
Mavris
,
D.
,
2021
, “
Design and Analysis of an Aircraft Thermal Management System Linked to a Low Bypass Ratio Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011019
.10.1115/1.4052031
27.
Wang
,
T.
,
Tian
,
Y. S.
,
Yin
,
Z.
,
Zhang
,
D. Y.
,
Ma
,
M. Z.
,
Gao
,
Q.
, and
Tan
,
C. Q.
,
2018
, “
Real-Time Variable Geometry Triaxial Gas Turbine Model for Hardware-in-the-Loop Simulation Experiments
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092603
.10.1115/1.4038992
28.
Barankiewicz
,
W. S.
,
Perusek
,
G. P.
, and
Ibrahim
,
M. B.
,
1994
, “
Approximate Similarity Principle for a Full-Scale STOVL Ejector
,”
J. Propul. Power
,
10
(
2
), pp.
198
203
.10.2514/3.23730
You do not currently have access to this content.