Abstract

Supercritical CO2 (sCO2) is taking a growing interest in both industry and academic communities as a promising technology capable of high efficiency, flexibility, and competitive capital costs. Many possible applications are studied in the energy field, from nuclear power plants to concentrating solar power and waste heat recovery (WHR). To evaluate the competitiveness of sCO2 cycles relative to other competing technologies, mainly steam and organic fluid Rankine cycles (ORC), a specific techno-economic analysis is needed to fairly compare the different technologies for each application, in order to find the most appropriate market position of the innovative sCO2 plants, compared to the existing steam and ORC solutions. In the present study, techno-economic analysis and optimization have been conducted focusing on WHR applications, for different sizes and cycle parameters operating conditions using an in-house simulation tool. The analyzed cycles were first optimized by aiming at maximizing the net electrical power and then aiming at minimizing the specific capital cost. As a result, compared to traditional plants, we obtained that in the first case, the more complex sCO2 cycle configuration shows competitive performance, while in the second case, the simpler sCO2 cycle configuration has a lower specific cost for the same electrical power produced (with a difference of approximately −130 €/kW compared to the steam cycle). In general, while traditional technologies confirmed a good tradeoff between performance and cost, supercritical CO2 cycles show attractive characteristics for applications requiring simplicity and compactness, guaranteeing in the meantime other technical advantages such as water-free operation.

References

1.
Bouakkaz
,
A.
,
Mena
,
A. J. G.
,
Haddad
,
S.
, and
Ferrari
,
M. L.
,
2021
, “
Efficient Energy Scheduling Considering Cost Reduction and Energy Saving in Hybrid Energy System With Energy Storage
,”
J. Energy Storage
,
33
, p.
101887
.10.1016/j.est.2020.101887
2.
Vannoni
,
A.
,
Giugno
,
A.
, and
Sorce
,
A.
,
2021
, “
Integration of a Flue Gas Condensing Heat Pump Within a Combined Cycle: Thermodynamic, Environmental and Market Assessment
,”
Appl. Therm. Eng.
,
184
, p.
116276
.10.1016/j.applthermaleng.2020.116276
3.
Bianchi
,
G.
,
Panayiotou
,
G. P.
,
Aresti
,
L.
,
Kalogirou
,
S. A.
,
Florides
,
G. A.
,
Tsamos
,
K.
,
Tassou
,
S. A.
, and
Christodoulides
,
P.
,
2019
, “
Estimating the Waste Heat Recovery in the European Union Industry
,”
Energy, Ecology Environ.
,
4
(
5
), pp.
211
221
.10.1007/s40974-019-00132-7
4.
Marchionni
,
M.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2020
, “
Review of Supercritical Carbon Dioxide (sCO2) Technologies for High-Grade Waste Heat to Power Conversion
,”
SN Appl. Sci.
,
2
(
4
), p. 611.10.1007/s42452-020-2116-6
5.
Marchionni
,
M.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2018
, “
Techno-Economic Assessment of Joule-Brayton Cycle Architectures for Heat to Power Conversion From High-Grade Heat Sources Using CO2 in the Supercritical State
,”
Energy
,
148
, pp.
1140
1152
.10.1016/j.energy.2018.02.005
6.
Wright
,
S. A.
,
Davidson
,
C. S.
, and
Scammell
,
W. O.
,
2016
, “
Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems
,”
The 5th International Symposium - Supercritical CO2 Power Cycles
, San Antonio, TX, Mar.
28
31
.http://sco2symposium.com/papers2016/SystemModeling/059paper.pdf
7.
Manente
,
G.
, and
Fortuna
,
F. M.
,
2019
, “
Supercritical CO2 Power Cycles for Waste Heat Recovery: A Systematic Comparison Between Traditional and Novel Layouts With Dual Expansion.
,”
Energy Convers. Manage.
,
197
, p.
111777
.10.1016/j.enconman.2019.111777
8.
Liu
,
L.
,
Yang
,
Q.
, and
Cui
,
G.
,
2020
, “
Supercritical Carbon Dioxide(s-CO2) Power Cycle for Waste Heat Recovery: A Review From Thermodynamic Perspective
,”
Processes
,
8
(
11
), p.
1461
.10.3390/pr8111461
9.
Huck
,
P.
,
Freund
,
S.
,
Lehar
,
M.
, and
Peter
,
M.
,
2016
, “
Performance Comparison of Supercritical CO2 Versus Steam Bottoming Cycles
,”
The 5th International Symposium - Supercritical CO2 Power Cycles
, San Antonio, TX, Mar.
28
31
.https://sco2symposium.com/papers2016/SystemConcepts/092paper.pdf
10.
Astolfi
,
M.
,
Alfani
,
D.
,
Lasala
,
S.
, and
Macchi
,
E.
,
2018
, “
Comparison Between ORC and CO2 Power Systems for the Exploitation of Low-Medium Temperature Heat Sources
,”
Energy
,
161
, pp.
1250
1261
.10.1016/j.energy.2018.07.099
11.
Ancona
,
M. A.
,
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Melino
,
F.
,
Peretto
,
A.
, and
Torricelli
,
N.
,
2021
, “
A Comparison Between ORC and Supercritical CO2 Bottoming Cycles for Energy Recovery From Industrial Gas Turbines Exhaust Gas
,”
ASME
Paper No. GT2021-59180.10.1115/GT2021-59180
12.
Held
,
T.
,
Persichilli
,
M.
,
Kacludis
,
A.
, and
Zdankiewicz
,
E.
,
2012
, “
Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 Can Displace Steam
,”
Power-Gen India & Central Asia 2012
, Pragati Maidan, New Delhi, India, Apr.
19
21
.https://www.echogen.com/documents/why-sco2-can-displace-steam.pdf
13.
Held
,
T. J.
,
2015
, “
Supercritical CO2 Cycles for Gas Turbine Combined Cycle Power Plants
,”
POWERGEN International Conference
, Las Vegas, NV, Dec. 8–10.https://www.echogen.com/_CE/pagecontent/Documents/Papers/Supercritical%20CO2%20Cycles%20for%20Gas%20Turbine%20Combined%20Cycle%20Power%20Plants.pdf
14.
Biondi
,
M.
,
Giovannelli
,
A.
,
Di Lorenzo
,
G.
, and
Salvini
,
C.
,
2020
, “
Techno-Economic Analysis of a sCO2 Power Plant for Waste Heat Recovery in Steel Industry
,”
Energy Rep.
,
6
, pp.
298
304
.10.1016/j.egyr.2020.11.147
15.
Danieli
,
P.
,
Rech
,
S.
, and
Lazzaretto
,
A.
,
2019
, “
Supercritical CO2 and Air Brayton-Joule Versus ORC Systems for Heat Recovery From Glass Furnaces: Performance and Economic Evaluation
,”
Energy
,
168
, pp.
295
309
.10.1016/j.energy.2018.11.089
16.
Song
,
J.
,
Li
,
X.
,
Wang
,
K.
, and
Markides
,
C.
,
2020
, “
Parametric Optimisation of a Combined Supercritical CO2 (S-CO2) Cycle and Organic Rankine Cycle (ORC) System for Internal Combustion Engine (ICE) Waste-Heat Recovery
,”
Energy Convers. Manage.
,
218
, p.
112999
.10.1016/j.enconman.2020.112999
17.
Del Turco
,
P.
,
Asti
,
A.
,
Scotti Del Greco
,
A.
,
Bacci
,
A.
,
Landi
,
G.
, and
Seghi
,
G.
,
2011
, “
The ORegen Waste Heat Recovery cycle: Reducing the CO2 Footprint by Means of Overallcycle Efficiency Improvement
,”
ASME
Paper No. GT2011-45051.10.1015/GT2011-45051
18.
Cho
,
S. K.
,
Kim
,
M.
,
Baik
,
S.
,
Ahn
,
Y.
, and
Lee
,
J. I.
,
2015
, “
Investigation of the Bottoming Cycle for High Efficiency Combined Cycle Gas Turbine System With Supercritical Carbon Dioxide Power Cycle
,”
ASME
Paper No. GT2015-43077.10.1115/GT2015-43077
19.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
20.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
BergmanT
,
L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
, Hoboken, NJ.
21.
Jiang
,
Y.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Bhattacharyya
,
D.
,
2018
, “
Design and Dynamic Modeling of Printed Circuit Heat Exchangers for Supercritical Carbon Dioxide Brayton Power Cycles
,”
Appl. Energy
,
231
, pp.
1019
1032
.10.1016/j.apenergy.2018.09.193
22.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. J. Chem. Eng.
,
16
(
2
), pp.
356
368
.https://typeset.io/papers/new-equations-for-heat-and-mass-transfer-in-turbulent-pipe-qjzxm4fhe9
23.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
219
228
.10.1115/1.2910348
24.
Chato
,
J. C.
,
1962
, “
Laminar Condensation Inside Horizontal and Inclined Tubes
,”
ASHRAE J.
,
4
, pp.
52
60
.http://hdl.handle.net/1721.1/28143
25.
Churchill
,
S. W.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to Circular Cylinder in Cross Flow
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
300
306
.10.1115/1.3450685
26.
Weiland
,
N. T.
,
Lance
,
B. W.
, and
Pidaparti
,
S. R.
,
2019
, “
SCO2 Power Cycle Component Cost Correlations From DOE Data Spanning Multiple Scales and Applications
,”
ASME
Paper No. GT2019-90493.10.1115/GT2019-90493
27.
Turton
,
R.
,
Bailie
,
R. C.
,
Whiting
,
W. B.
, and
Shaeiwitz
,
J. A.
,
2018
,
Analysis, Synthesis and Design of Chemical Processes
, 5th ed.,
Prentice Hall
, Hoboken, NJ.
28.
Frangopoulos
,
C. A.
,
1983
, “Thermoeconomic Functional Analysis: A Method for Optimal Design or Improvement of Complex Thermal Systems,” Ph.D. thesis,
Georgia Institute of Technology
, Atlanta, GA.
29.
Jenkins
,
S.
,
2019
, “Chemical Engineering Plant Cost Index Annual Average,” Chemical Engineering, New York, accessed Oct. 5, 2022, https://www.chemengonline.com/
30.
Lozza
,
G.
,
2016
, “
Turbine a Gas e Cicli Combinati
,”
Esculapio
, 3rd., ed., Bologna, Italy.
31.
Fröhling
,
W.
,
Unger
,
H. M.
, and
Dong
,
Y.
,
2002
, “
Thermodynamic Assessment of Plant Efficiencies for HTR Poer Conversion Systems
,”
Proceedings of the Conference on High Temperature Reactors
, International Atomic Energy Agency (IAEA), Petten, The Netherlands, Apr. 22–24, Report No.
INIS-XA–524
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/033/33033053.pdf
32.
Ginosar
,
D. M.
,
Petkovic
,
L. M.
, and
Guillen
,
D. P.
,
2011
, “
Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid
,”
Energy Fuels
,
25
(
9
), pp.
4138
4144
.10.1021/ef200639r
33.
Walter
,
H.
, and
Hofmann
,
R.
,
2011
, “
How Can the Heat Transfer Correlations for Finned-Tubes Influence the Numerical Simulation of the Dynamic Behavior of a Heat Recovery Steam Generator?
,”
Appl. Therm. Eng.
,
31
(
4
), pp.
405
417
.10.1016/j.applthermaleng.2010.08.015
34.
de Campos
,
G. B.
,
Bringhenti
,
C.
,
Traverso
,
A.
, and
Tomita
,
J. T.
,
2020
, “
Thermoeconomic Optimization of Organic Rankine Bottoming Cycles for Micro Gas Turbines
,”
Appl. Therm. Eng.
,
164
, p.
114477
.10.1016/j.applthermaleng.2019.114477
35.
Kakaç
,
S.
,
Liu
,
H.
, and
Pramuanjaroenkij
,
A.
,
2012
,
Heat Exchangers: Selection, Rating, and Thermal Design
, 3rd ed.,
Taylor & Francis Group
, Oxford, UK.
You do not currently have access to this content.