Abstract

Rising demands on material performance at high temperature in components under complex loading such as steam- and gas turbine housings require an increase in versatility and precision of component life modeling approaches. However, the database to calibrate those models is commonly derived from uni-axial testing. The impact of multi-axial loading, both proportional and nonproportional, is usually addressed theoretically by the use of equivalent stress/strain formulations or reduction ratios derived from few specific validation tests. Therefore, a research program which systematically investigates the fatigue life of a 1Cr-cast steel both experimentally and theoretically has been initiated recently. For the experimental part, cruciform specimens are tested in a servohydraulic biaxial test rig equipped with an induction heating device. Each experiment is accompanied with finite element simulations before and after the test to parametrize the loading condition and derive equivalent loading parameters at hot-spot locations. When assessing cycles until crack initiation in the experiments using the von Mises equivalent strain range, a reoccurring sequence in the impact of the axis ratio can be observed. Beside the fatigue life in terms of cycles to crack initiation, the multi-axial loading conditions may also affect the deformation behavior, in detail cyclic softening. Such effects are discussed by comparing the produced experimental evidence with results gained from a unified constitutive material model. Furthermore, different lifetime parameters are applied in order to judge their accuracy and suitability for design applications.

References

1.
Scholz
,
A.
,
Kern
,
T.-U.
,
Reigl
,
M.
,
Almstedt
,
H.
, and
Oechsner
,
M.
,
2017
, “
High-Temperature Behavior Under Variable loads-FVWHT Working Groups W9 and W10
,”
VGB PowerTech Spec. Print
,
10
, pp.
58
70
.
2.
Kong
,
R.
,
Linn
,
S.
,
Kontermann
,
C.
,
Biehler
,
J.
,
Scholz
,
A.
, and
Oechsner
,
M.
,
2015
, “
Ermittlung und Bewertung des rechnerischen Lebensdauerverbrauchs hoch beanspruchter dickwandiger Gussgehäuse bei hohen Temperaturen
,”
Proceedings of the 38 FVWHT Vortragsveranstaltung
, Duesseldorf, Germany, Nov. 27, pp.
1
12
.
3.
Socie
,
D. F.
, and
Marquis
,
G. B.
,
2000
,
Multiaxial Fatigue
,
Society of Automotive Engineers
,
Warrendale, PA
.
4.
Berger, C., and Scholz, A., 2005, “Deformation and Life Assessment of High Temperature Materials Under Creep Fatigue Loading,”
Materialwissenschaft und Werkstofftechnik
, 36(11), pp. 722–730.10.1002/mawe.200500941
5.
Kulawinski
,
D.
,
2015
, “
Biaxial-planare isotherme und thermo-mechanische Ermüdung an polykristallinen Nickelbasis-Superlegierungen
,” Ph.D. thesis,
TU Freiberg
,
Freiberg, Germany
.
6.
Itoh
,
T.
,
Sakane
,
M.
, and
Ohnami
,
M.
,
1994
, “
High Temperature Multiaxial Low Cycle Fatigue of Cruciform Specimen
,”
ASME J. Eng. Mater. Technol.
,
116
(
1
), pp.
90
98
.10.1115/1.2904261
7.
Sakane
,
M.
,
Zhang
,
S.
,
Yoshinari
,
A.
,
Matsuda
,
N.
, and
Isobe
,
N.
,
2013
, “
Multiaxial Low Cycle Fatigue for Ni-Base Single Crystal Super Alloy at High Temperature
,”
Advanced Material Models for Structures
,
Springer
,
Berlin, Heidelberg
, pp.
297
305
.
8.
Cui
,
L.
,
Wang
,
P.
,
Hoche
,
H.
,
Scholz
,
A.
, and
Berger
,
C.
,
2013
, “
The Influence of Temperature Transients on the Lifetime of Modern High-Chromium Rotor Steel Under Service-Type Loading
,”
Mater. Sci. Eng.: A
,
560
, pp.
767
780
.10.1016/j.msea.2012.10.032
9.
Simon
,
A.
,
Scholz
,
A.
, and
Berger
,
C.
,
2009
, “
Validation of Creep Fatigue Lifetime Calculation Methods for the Application to Steam Turbine Rotors, Variable Amplitude Loading
,”
Variable Amplitude Loading, Proceedings, DVM
,
C. M.
Sonsino
, and
P.
McKeighan
, eds., Vol.
I
, Darmstadt, Germany, Mar. 23–26, pp.
307
314
.
10.
Lyschik
,
M.
,
2012
, “
Schädigungsbeschreibung an massiven heißgängigen Kraftwerkskomponenten bei Anfahrvorgängen am Beispiel des Werkstoffes 23CrMoNiWV8-8
,” Ph.D. thesis,
TU Darmstadt, Hesse, Germany
.
11.
Babu
,
H. R.
,
Böcker
,
M.
,
Raddatz
,
M.
,
Henkel
,
S.
,
Biermann
,
H.
, and
Gampe
,
U.
,
2021
, “
Experimental and Numerical Investigations of High-Temperature Multiaxial Fatigue
,”
ASME
Paper No. GT2021–58959.10.1115/GT2021-58959
12.
Babu
,
H. R.
,
Raddatz
,
M.
,
Boecker
,
M.
, and
Henkel
,
S.
,
2021
, “
Lifing Methods, Multiaxial and Anisothermal
,”
FVV Inf. Sessions Turbomach.
,
R599
, pp.
445
478
.
13.
Erbe, A., Conrad, F., Kraemer
,
K. M.
,
Kontermann
,
C.
, Bianchini, M., Kulawinski, D., and
Oechsner
,
M.
,
2021
, “
A Systematic Experimental Study on the Impact of Multiaxiality and Non-Proportionality on Fatigue Life of Cast Steels at High Temperature
,”
Procedia Struct. Integr.,
38
, pp.
192
201
.10.1016/j.prostr.2022.03.020
14.
Crossland
,
B.
,
1956
, “
Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of an Alloysteel
,”
Proceedings of International Conference on Fatigue of Metals
, Vol.
138
, London, UK, Sept. 10–14, p.
12
.
15.
Maktouf
,
W.
,
Ammar
,
K.
,
Ben Naceur
,
I.
, and
Saï
,
K.
,
2016
, “
Multiaxial High-Cycle Fatigue Criteria and Life Prediction: Application to Gas Turbine Blade
,”
Int. J. Fatigue
,
929
, pp.
25
35
.10.1016/j.ijfatigue.2016.06.024
16.
Sahadi
,
J.
,
Paynter
,
R.
,
Nowell
,
D.
,
Pattison
,
S.
, and
Fox
,
N.
,
2017
, “
Comparison of Multiaxial Fatigue Parameters Using Biaxial Tests of Waspaloy
,”
Int. J. Fatigue
,
100
, pp.
477
488
.10.1016/j.ijfatigue.2017.01.019
17.
Itoh
,
T.
,
Sakane
,
M.
,
Hata
,
T.
, and
Hamada
,
N.
,
2006
, “
A Design Procedure for Assessing Low Cycle Fatiguelife Under Proportional and Non-Proportional Loading
,”
Int. J. Fatigue
,
28
(
5–6
), pp.
459
466
.10.1016/j.ijfatigue.2005.08.007
18.
Zhang
,
S.
, and
Sakane
,
M.
,
2007
, “
Multiaxial Creep-Fatigue Life Prediction for Cruciform Speci-Men
,”
Int. J. Fatigue
,
29
(
12
), pp.
2191
2199
.10.1016/j.ijfatigue.2006.12.012
19.
Tchankov
,
D.
,
Sakane
,
M.
,
Itoh
,
T.
, and
Hamada
,
N.
,
2008
, “
Crack Opening Displacement Approach Toassess Multiaxial Low Cycle Fatigue
,”
Int. J. Fatigue
,
30
(
3
), pp.
417
425
.10.1016/j.ijfatigue.2007.04.014
20.
Samir
,
A.
,
Simon
,
A.
,
Scholz
,
A.
, and
Berger
,
C.
,
2006
, “
Service-Type Creep-Fatigue Experiments With Cruciform Specimens and Modelling of Deformation
,”
Int. J. Fatigue
,
28
(
5–6
), pp.
643
651
.10.1016/j.ijfatigue.2005.08.010
21.
Wang
,
P.
,
Cui
,
L.
,
Lyschik
,
M.
,
Scholz
,
A.
,
Berger
,
C.
, and
Oechsner
,
M.
,
2012
, “
A Local Extrapolation Based Calculation Reduction Method for the Application of Consitutive Material Models for Creep Fatigue Assessment
,”
Int. J. Fatigue
,
44
, pp.
253
259
.10.1016/j.ijfatigue.2012.04.018
22.
Kontermann
,
C.
,
Scholz
,
A.
, and
Oechsner
,
M.
,
2014
, “
A Method to Reduce Calculation Time for FE Simulations Using Constitutive Material Models
,”
Mater. High Temp.
,
31
(
4
), pp.
334
342
.10.1179/0960340914Z.00000000044
23.
Kontermann
,
C.
,
Linn
,
S.
, and
Oechsner
,
M.
,
2019
, “
Application Concepts and Experimental Validation of Constitutive Material Models for Creep-Fatigue Assessment of Components
,”
ASME
Paper No. GT2019-91450.10.1115/GT2019-91450
24.
Hamada
,
N.
,
Sakane
,
M.
, and
Ohnami
,
M.
,
1989
,
“COD Criterion to Assess High Temperature Biaxial Low Cycle Fatigue,” Third International Conference on Biaxial/Multiaxial Fatigue
, Stuttgart, Germany, Apr. 3–6, pp.
1
15
.
You do not currently have access to this content.