Abstract

The growing share of renewable energies in our electricity production, together with the still lacking storage capacity, strongly reinforces the need for more flexible electricity production units. In this context, combined cycle gas turbines (CCGTs) have a role to play, both in the current and future electricity production system due to their high efficiency, high load flexibility, and low CO2 emissions compared to other conventional thermal power plants. Nevertheless, bearing in mind our current challenges concerning climate change, the CO2 emissions of these CCGTs need to be reduced drastically. The amine-based absorption carbon capture (CC) process is currently the most mature and applicable CC technology. This process is known to require a considerable amount of thermal energy, degrading plant performance. However, to back-up renewable production, CCGTs will operate most of the time under part-load conditions. The impact of these part-load operations on the CC is still relatively unknown. Within this framework, this study aims to assess the performance of the CC process applied to a typical CCGT under part-load operation using specific simulation models. The CC plant model has been successfully validated against experimental data from a pilot-scale capture facility. Then, the CC plant has been scaled-up to the CCGT scale and the process has been optimized for each operating condition. The simulation results show that the specific reboiler duty increases for part-load operation, while the specific cooling requirements decrease. Moreover, the analysis of the yearly CCGT operation highlights a relative increase in CC energy penalty of 21% for an annual CCGT load factor of 0.5, impacting significantly plant performance. The next step will involve reducing this energy penalty.

References

1.
Jones, D.,
2021
, “
The European Power Sector in 2020
,” Ember, London, UK, accessed Dec. 8, 2021, https://ember-climate.org/project/eu-power-sector-2020/
2.
Gonzalez-Salazar
,
M. A.
,
Kirsten
,
T.
, and
Prchlik
,
L.
,
2018
, “
Review of the Operational Flexibility and Emissions of Gas- and Coal-Fired Power Plants in a Future With Growing Renewables
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1497
1513
.10.1016/j.rser.2017.05.278
3.
Leung
,
D. Y.
,
Caramanna
,
G.
, and
Maroto-Valer
,
M. M.
,
2014
, “
An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
426
443
.10.1016/j.rser.2014.07.093
4.
Mikulčić
,
H.
,
Skov
,
I. R.
,
Dominković
,
D. F.
,
Wan Alwi
,
S. R.
,
Manan
,
Z. A.
,
Tan
,
R.
,
Duić
,
N.
,
Mohamad
,
S. N. H.
, and
Wang
,
X.
,
2019
, “
Flexible Carbon Capture and Utilization Technologies in Future Energy Systems and the Utilization Pathways of Captured CO2
,”
Renewable Sustainable Energy Rev.
,
114
, p.
109338
.10.1016/j.rser.2019.109338
5.
Canepa
,
R.
,
Wang
,
M.
,
Biliyok
,
C.
, and
Satta
,
A.
,
2013
, “
Thermodynamic Analysis of Combined Cycle Gas Turbine Power Plant With Post-Combustion CO2 Capture and Exhaust Gas Recirculation
,”
Proc. Inst. Mech. Eng., Part E
,
227
(
2
), pp.
89
105
.10.1177/0954408912469165
6.
Hetland
,
J.
,
Kvamsdal
,
H. M.
,
Haugen
,
G.
,
Major
,
F.
,
Karstad
,
V.
, and
Tjellander
,
G.
,
2009
, “
Integrating a Full Carbon Capture Scheme Onto a 450 MWe NGCC Electric Power Generation Hub for Offshore Operations: Presenting the Sevan GTW Concept
,”
Appl. Energy
,
86
(
11
), pp.
2298
2307
.10.1016/j.apenergy.2009.03.019
7.
Soltani
,
S. M.
,
Fennell
,
P. S.
, and
Mac Dowell
,
N.
,
2017
, “
A Parametric Study of CO2 Capture From Gas-Fired Power Plants Using Monoethanolamine (MEA)
,”
Int. J. Greenhouse Gas Control
,
63
, pp.
321
328
.10.1016/j.ijggc.2017.06.001
8.
Biliyok
,
C.
, and
Yeung
,
H.
,
2013
, “
Evaluation of Natural Gas Combined Cycle Power Plant for Post-Combustion CO2 Capture Integration
,”
Int. J. Greenhouse Gas Control
,
19
, pp.
396
405
.10.1016/j.ijggc.2013.10.003
9.
Jordal
,
K.
,
Ystad
,
P. A. M.
,
Anantharaman
,
R.
,
Chikukwa
,
A.
, and
Bolland
,
O.
,
2012
, “
Design-Point and Part-Load Considerations for Natural Gas Combined Cycle Plants With Post Combustion Capture
,”
Int. J. Greenhouse Gas Control
,
11
, pp.
271
282
.10.1016/j.ijggc.2012.09.005
10.
Rezazadeh
,
F.
,
Gale
,
W. F.
,
Hughes
,
K. J.
, and
Pourkashanian
,
M.
,
2015
, “
Performance Viability of a Natural Gas Fired Combined Cycle Power Plant Integrated With Post-Combustion CO2 Capture at Part-Load and Temporary Non-Capture Operations
,”
Int. J. Greenhouse Gas Control
,
39
, pp.
397
406
.10.1016/j.ijggc.2015.06.003
11.
Alcaráz-Calderon
,
A. M.
,
González-Díaz
,
M. O.
,
Mendez
,
Á.
,
González-Santaló
,
J. M.
, and
González-Díaz
,
A.
,
2019
, “
Natural Gas Combined Cycle With Exhaust Gas Recirculation and CO2 Capture at Part-Load Operation
,”
J. Energy Inst.
,
92
(
2
), pp.
370
381
.10.1016/j.joei.2017.12.007
12.
Adams
,
T.
, and
Mac Dowell
,
N.
,
2016
, “
Off-Design Point Modelling of a 420 MW CCGT Power Plant Integrated With an Amine-Based Post-Combustion CO2 Capture and Compression Process
,”
Appl. Energy
,
178
, pp.
681
702
.10.1016/j.apenergy.2016.06.087
13.
Thermoflow
, 2021, “Knowledge = Power,” Thermoflow, Jacksonville, FL, accessed Sept. 20, 2021, https://www.thermoflow.com
14.
UKCCSRC,
2016
, “
Pilot-Scale Advanced Capture Technology (PACT)
,” UKCCSRC, Sheffield, UK, accessed Sept. 16, 2021, https://ukccsrc.ac.uk/
15.
Agbonghae
,
E. O.
,
Best
,
T.
,
Finney
,
K. N.
,
Palma
,
C. F.
,
Hughes
,
K. J.
, and
Pourkashanian
,
M.
,
2014
, “
Experimental and Process Modelling Study of Integration of a Micro-Turbine With an Amine Plant
,”
Energy Procedia
,
63
, pp.
1064
1073
.10.1016/j.egypro.2014.11.114
16.
Zhang
,
Y.
,
Que
,
H.
, and
Chen
,
C.-C.
,
2011
, “
Thermodynamic Modeling for CO2 Absorption in Aqueous MEA Solution With Electrolyte NRTL Model
,”
Fluid Phase Equilib.
,
311
, pp.
67
75
.10.1016/j.fluid.2011.08.025
17.
Zhang
,
Y.
,
Chen
,
H.
,
Chen
,
C.-C.
,
Plaza
,
J.
,
Dugas
,
R.
, and
Rochelle
,
G.
,
2009
, “
Rate-Based Process Modeling Study of CO2 Capture With Aqueous Monoethanolamine Solution
,”
Ind. Eng. Chem. Res.
,
48
(
20
), pp.
9233
9246
.10.1021/ie900068k
18.
Giorgetti
,
S.
,
Bricteux
,
L.
,
Parente
,
A.
,
Blondeau
,
J.
,
Contino
,
F.
, and
Paepe
,
W. D.
,
2017
, “
Carbon Capture on Micro Gas Turbine Cycles: Assessment of the Performance on Dry and Wet Operations
,”
Appl. Energy
,
207
, pp.
243
253
.10.1016/j.apenergy.2017.06.090
19.
Khan
,
T.
,
Khan
,
M.
,
Chyu
,
M.
, and
Ayub
,
Z.
,
2010
, “
Experimental Investigation of Single Phase Convective Heat Transfer Coefficient in a Corrugated Plate Heat Exchanger for Multiple Plate Configurations
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
1058
1065
.10.1016/j.applthermaleng.2010.01.021
20.
Sherwood
,
T.
,
Shipley
,
G.
, and
Holloway
,
F.
,
1938
, “
Flooding Velocities in Packed Columns
,”
Ind. Eng. Chem.
,
30
(
7
), pp.
765
769
.10.1021/ie50343a008
21.
Otitoju
,
O.
,
Oko
,
E.
, and
Wang
,
M.
,
2020
, “
A New Method for Scale-Up of Solvent-Based Post-Combustion Carbon Capture Process With Packed Columns
,”
Int. J. Greenhouse Gas Control
,
93
, p.
102900
.10.1016/j.ijggc.2019.102900
22.
Agbonghae
,
E.
,
Hughes
,
K.
,
Ingham
,
D.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2014
, “
Optimal Process Design of Commercial-Scale Amine-Based CO2 Capture Plants
,”
Ind. Eng. Chem. Res.
,
53
(
38
), pp.
14815
14829
.10.1021/ie5023767
23.
Li
,
K.
,
Yu
,
H.
,
Feron
,
P.
,
Tade
,
M.
, and
Wardhaugh
,
L.
,
2015
, “
Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station
,”
Environ. Sci. Technol.
,
49
(
16
), pp.
10243
10252
.10.1021/acs.est.5b02258
24.
Blondeau
,
J.
, and
Mertens
,
J.
,
2019
, “
Impact of Intermittent Renewable Energy Production on Specific CO2 and NOx Emissions From Large Scale Gas-Fired Combined Cycles
,”
J. Cleaner Prod.
,
221
, pp.
261
270
.10.1016/j.jclepro.2019.02.182
You do not currently have access to this content.