Abstract

Modern gas turbine combustors rely on thermal barrier coatings (TBC) in addition to sophisticated cooling strategies to survive high temperature environments. The need for lower emissions either driven by International Civil Aviation Organization (ICAO) regulations or by customer's desire for green engines often necessitates an increased air budget for improved mixing, thus resulting in less available cooling flow. Even with state-of-the-art cooling schemes to offset reduced cooling air allocation, combustors can benefit from better TBC performance to mitigate durability challenges. This paper showcases the next generation air plasma spray (APS) porous TBC developed by Honeywell as well as discusses tests performed and results gathered to assess its suitability for combustor application. A configured test specimen was utilized to evaluate suitability of a new coating system for combustor application. The configured specimen captures the material system, geometric features, manufacturing, and assembly process associated with combustor fabrication and thus provides a realistic environment for performance assessment. The configured specimen test results indicate the new APS porous TBC showed better performance than the standard 6–8% Yttria stabilized zirconia (YSZ) porous TBC. The new TBC with its lower conductivity at higher temperature increased thickness capability, and superior stability at substantially higher temperature than 6–8% YSZ TBC enables hot section components to survive hotter engine cycles.

References

1.
Smialek
,
J.
, and
Miller
,
R. A.
,
2018
, “
Revisiting the Birth of 7YSZ Thermal Barrier Coatings: Stephan Stecura
,”
Coatings
,
8
(
7
), p.
255
.10.3390/coatings8070255
2.
Darolia
,
R.
,
2013
, “
Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects
,”
Int. Mater. Rev.
,
58
(
6
), pp.
315
348
.10.1179/1743280413Y.0000000019
3.
Meier
,
S. M.
, and
Gupta
,
D. K.
,
1992
, “
The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications
,”
ASME J. Eng. Gas Turbines and Power,
116(1), pp. 250–257.10.1115/1.2906801
4.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.10.1126/science.1068609
5.
Feuerstein
,
A.
,
Knapp
,
J.
,
Taylor
,
T.
,
Ashary
,
A.
,
Bolcavage
,
A.
, and
Hitchman
,
N.
,
2008
, “
Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review
,”
J. Therm. Spray Technol.
,
17
(
2
), pp.
199
213
.10.1007/s11666-007-9148-y
6.
Bose
,
S.
, and
DeMasi-Marcin
,
J.
,
1997
, “
Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney
,”
J. Therm. Spray Technol.
,
6
(
1
), pp.
99
104
.10.1007/BF02646318
7.
Zhu
,
D.
, and
Miller
,
R. A.
,
2008
, “
Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions
,” 35th International Conference on Metallurgical Coatings and Thin Films (
ICMCTF 2008
), San Diego, CA, Apr. 27–May 2.https://ntrs.nasa.gov/api/citations/20080047729/downloads/20080047729.pdf
8.
Zhu
,
D.
, and
Miller
,
R. A.
,
2004
, “
Development of Advanced Low Conductivity Thermal Barrier Coatings
,” NASA Glenn Research Center, Cleveland, OH, Report No.
NASA/TM-2004-212961
.https://ntrs.nasa.gov/api/citations/20040086705/downloads/20040086705.pdf
9.
Zhu
,
M.
,
2004
, “
Low Conductivity and Sintering-Resistant Thermal Barrier Coatings
,” U.S. Patent No. 6812176 B1.
10.
Schmitt
,
M. P.
,
Rai
,
A. K.
,
Bhattacharya
,
R.
,
Zhu
,
D.
, and
Wolfe
,
D. E.
,
2014
, “
Multilayer Thermal Barrier Coating (TBC) Architectures Utlizing Rare Earth Doped YSZ and Rare Earth Pyrochlores
,” NASA Glenn Research Center, Cleveland, OH, Report No.
NASA/TM-2014-218338
.https://ntrs.nasa.gov/citations/20150000849
11.
Vassen
,
R.
,
Stuke
,
A.
, and
Stöver
,
D.
,
2009
, “
Recent Developments in the Field of Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
18
(
2
), pp.
181
186
.10.1007/s11666-009-9312-7
12.
Vassen
,
R.
,
Cao
,
X. Q.
,
Tietz
,
F.
,
Basu
,
D.
, and
Stover
,
D.
,
2004
, “
Zirconates as New Materials for Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
83
(
8
), pp.
2023
2028
.10.1111/j.1151-2916.2000.tb01506.x
13.
Levi
,
C. G.
,
2004
, “
Emerging Materials and Processes for Thermal Barrier Systems
,”
Curr. Opin. Solid State Mater. Sci.
,
8
(
1
), pp.
77
91
.10.1016/j.cossms.2004.03.009
14.
Clarke
,
D. R.
,
2003
, “
Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
163–164
, pp.
67
74
.10.1016/S0257-8972(02)00593-5
15.
Pan
,
W.
,
Phillpot
,
S. R.
,
Wan
,
C. L.
,
Chernatynskiy
,
A.
, and
Qu
,
Z.
,
2012
, “
Low Thermal Conductivity Oxides
,”
MRS Bull.
,
37
(
10
), pp.
917
922
.10.1557/mrs.2012.234
16.
Viswanathan
,
V.
,
Dwivedi
,
G.
, and
Sampath
,
S.
,
2014
, “
Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance
,”
J. Am. Ceram. Soc.
,
97
(
9
), pp.
2770
2778
.10.1111/jace.13033
17.
Viswanathan
,
V.
,
Dwivedi
,
G.
, and
Sampath
,
S.
,
2015
, “
Multilayer, Multimaterial Thermal Barrier Coating Systems: Design, Synthesis, and Performance Assessment
,”
J. Am. Ceram. Soc.
,
98
(
6
), pp.
1769
1777
.10.1111/jace.13563
18.
Subramanian
,
R.
,
Burns
,
A.
, and
Stamm
,
W.
,
2008
, “
Advanced Multi-Functional Coatings for Land Based Industrial Gas Turbines
,”
ASME
Paper No. GT2008-51532.10.1115/GT2008-51532
19.
Smith
,
J.
,
Scheibel
,
J.
,
Classen
,
D.
,
Paschke
,
S.
,
Elbel
,
S.
,
Fick
,
K.
, and
Carlson
,
D.
,
2016
, “
Thermal Barrier Coating Validation Testing for Industrial Gas Turbine Combustion Hardware
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
031508
.10.1115/1.4031448
20.
Tolpygo
,
V. K.
,
2013
, “
Turbine Engine Components
,” U.S. Patent No. 8449994.
21.
Tolpygo
,
V. K.
, and
Baker
,
W.
,
2017
, “
Low Conductivity Thermal Barrier Coating
,” U.S. Patent No. 9683448.
22.
Jorgensen
,
D. J.
,
Tolpygo
,
V. K.
, and
Baker
,
W.
,
2020
, “
Quinary Low-Conductivity Thermal Barrier Coatings for Turbine Engine Components
,” U.S. Patent No. 10808555.
23.
Lutz
,
B.
, and
Tolpygo
,
V.
,
2021
, “
Grit-Blasted and Densified Bond Coat for Thermal Barrier Coating and Method of Manufacturing the Same
,” U.S. Patent No. 11142818.
24.
Lutz
,
B.
, and
Jorgensen
,
D.
,
2021
, “
Methods for Manufacturing Porous Thermal Barrier Coatings Using Air Plasma Spray Techniques
,” U.S. Patent No. US2021/0189892.
25.
Lipkin
,
D. M.
,
Krogstad
,
J. A.
,
Gao
,
Y.
,
Johnson
,
C. A.
,
Nelson
,
W. A.
, and
Levi
,
C. G.
,
2013
, “
Phase Volution Upon Aging of Air-Plasma Sprayed t′-Zirconia Coatings: I—Synchrotron X-Ray Diffraction
,”
J. Am. Ceram. Soc.
,
96
(
1
), pp.
290
298
.10.1111/j.1551-2916.2012.05451.x
26.
Rudrapatna
,
N. S.
,
Peterson
,
B. H.
, and
Greving
,
D.
,
2011
, “
An Experimental System for Assessing Combustor Durability
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042103
.10.1115/1.4002177
You do not currently have access to this content.