Abstract

This paper investigates the local stability analysis of periodic solutions corresponding to the nonlinear vibration response of an industrial compressor blade, NASA rotor 37, on which are applied different types of nonlinearities. These solutions are obtained using a harmonic balance method-based approach presented in a previous paper. It accounts for unilateral contact and dry friction of the rotating blade against a rigid casing through a regularized penalty law. A Lanczos filtering technique is also employed to mitigate spurious oscillations related to the Gibbs phenomenon thus enhancing the robustness of the solver. In addition, a component mode synthesis technique is used to reduce the dimension of the numerical model. Stability assessment of the computed solutions relies on Floquet theory. It is performed through the computation of the monodromy matrix as well as Hill's method. Both methodologies are applied and thoroughly compared as the severity of the nonlinearity is gradually increased from a cubic spring to three-dimensional contact conditions on a deformed casing. While the presented results underline the applicability of both stability assessment methodologies for all types of nonlinearities, they also put forward the much higher computational effort required when computing the monodromy matrix. Indeed, it is shown that Hill's method yields converged results for significantly lower values of both the number of retained harmonics and the considered number of time steps thus making it a far more efficient method when dealing with industrial models. It is also underlined that the presented results are in excellent agreement with reference solution points obtained with time domain solution methods. Specific implementation tweaks that were found to be of critical importance in order to efficiently assess the stability of computed solutions are also detailed in order to provide a comprehensive view of the challenges inherent to such numerical developments.

References

1.
Jacquet-Richardet
,
G.
,
Torkhani
,
M.
,
Cartraud
,
P.
,
Thouverez
,
F.
,
Baranger
,
T. N.
,
Herran
,
M.
,
Gibert
,
C.
,
Baguet
,
S.
,
Almeida
,
P.
, and
Peletan
,
L.
,
2013
, “
Rotor to Stator Contacts in Turbomachines. Review and Application
,”
Mech. Syst. Sig. Process
,
40
(
2
), pp.
401
420
.10.1016/j.ymssp.2013.05.010
2.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
3.
Siewert
,
C.
,
Panning
,
L.
,
Wallaschek
,
J.
, and
Richter
,
C.
, “
Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082501
.10.1115/1.4000266
4.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082504
.10.1115/1.4006446
5.
Almeida
,
P.
,
Gibert
,
C.
,
Thouverez
,
F.
,
Leblanc
,
X.
, and
Ousty
,
J.-P.
,
2015
, “
Experimental Analysis of Dynamic Interaction Between a Centrifugal Compressor and Its Casing
,”
ASME J. Turbomach.
,
137
(
3
), p.
031008
.10.1115/1.4028328
6.
Delhez
,
E.
,
Nyssen
,
F.
,
Golinval
,
J.-C.
, and
Batailly
,
A.
,
2021
, “
Reduced Order Modeling of Blades With Geometric Nonlinearities and Contact Interactions
,”
J. Sound Vib.
,
500
, p.
116037
.10.1016/j.jsv.2021.116037
7.
Piollet
,
E.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2019
, “
Blade/Casing Rubbing Interactions in Aircraft Engines: Numerical Benchmark and Design Guidelines Based on NASA Rotor 37
,”
J. Sound Vib.
,
460
, p.
114878
.10.1016/j.jsv.2019.114878
8.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2021
, “
The Harmonic Balance Method With Arc-Length Continuation in Blade-Tip/Casing Contact Problems
,”
J. Sound Vib.
,
502
, p.
116070
.10.1016/j.jsv.2021.116070
9.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2021
, “
Development of a Harmonic Balance Method-Based Numerical Strategy for Blade-Tip/Casing Interactions: Application to NASA Rotor 37
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111025
.10.1115/1.4051967
10.
Bentvelsen
,
B.
, and
Lazarus
,
A.
,
2018
, “
Modal and Stability Analysis of Structures in Periodic Elastic States: Application to the Ziegler Column
,”
Nonlinear Dyn.
,
91
(
2
), pp.
1349
1370
.10.1007/s11071-017-3949-4
11.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
,
Springer
,
Cham, Switzerland
.
12.
Petrov
,
E. P.
,
2017
, “
Stability Analysis of Multiharmonic Nonlinear Vibrations for Large Models of Gas Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022508
.10.1115/1.4034353
13.
Petrov
,
E. P.
,
2018
, “
A Method for Parametric Analysis of Stability Boundaries for Nonlinear Periodic Vibrations of Structures With Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031023
.10.1115/1.4040850
14.
Cardona
,
A.
,
Lerusse
,
A.
, and
Géradin
,
M.
,
1998
, “
Fast Fourier Nonlinear Vibration Analysis
,”
Comput. Mech.
,
22
(
2
), pp.
128
142
.10.1007/s004660050347
15.
Peletan
,
L.
,
Baguet
,
S.
,
Torkhani
,
M.
, and
Jacquet-Richardet
,
G.
,
2013
, “
A Comparison of Stability Computational Methods for Periodic Solution of Nonlinear Problems With Application to Rotordynamics
,”
Nonlinear Dyn.
,
72
(
3
), pp.
671
682
.10.1007/s11071-012-0744-0
16.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
The Harmonic Balance Method for Bifurcation Analysis of Large-Scale Nonlinear Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
296
, pp.
18
38
.10.1016/j.cma.2015.07.017
17.
Seydel
,
R.
,
2009
,
Practical Bifurcation and Stability Analysis
, Vol.
5
,
Springer
,
New York
.
18.
Von Groll
,
G.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.10.1006/jsvi.2000.3298
19.
Woiwode
,
L.
,
Narayanaa Balaji
,
N.
,
Kappauf
,
J.
,
Tubita
,
F.
,
Guillot
,
L.
,
Vergez
,
C.
,
Cochelin
,
B.
,
Grolet
,
A.
, and
Krack
,
M.
,
2020
, “
Comparison of Two Algorithms for Harmonic Balance and Path Continuation
,”
Mech. Syst. Sig. Process
,
136
, p.
106503
.10.1016/j.ymssp.2019.106503
20.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
21.
Sarrouy
,
E.
, and
Sinou
,
J.-J.
,
2011
, “
Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems - On the Use of the Harmonic Balance Methods
,”
Advances in Vibration Analysis Research
, Vol.
21
,
F.
Ebrahimi
, ed.,
IntechOpen
,
Rijeka, Croatia
, pp.
419
434
.
22.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
, “
Local Bifurcations
,”
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer
,
New York
, pp.
117
165
.
23.
Moore
,
G.
,
2005
, “
Floquet Theory as a Computational Tool
,”
SIAM J. Numer. Anal.
,
42
(
6
), pp.
2522
2568
.10.1137/S0036142903434175
24.
Zhou
,
J.
,
Hagiwara
,
T.
, and
Araki
,
M.
,
2004
, “
Spectral Characteristics and Eigenvalues Computation of the Harmonic State Operators in Continuous-Time Periodic Systems
,”
Syst. Control Lett.
,
53
(
2
), pp.
141
155
.10.1016/j.sysconle.2004.03.002
25.
Thomas
,
O.
,
Lazarus
,
A.
, and
Touzé
,
C.
,
2010
, “
A Harmonic-Based Method for Computing the Stability of Periodic Oscillations of Non-Linear Structural Systems
,”
ASME
Paper No. DETC2010-28407.10.1115/DETC2010-28407
26.
Huebler
,
D.
,
1977
, “
Rotor 37 and Stator 37 Assembly. Records of the National Aeronautics and Space Administration, 1903–2006. Photographs Relating to Agency Activities, Facilities and Personnel
,” pp.
1973
2013
.https://catalog.archives.gov/id/17468361
27.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TP-1337
.https://ntrs.nasa.gov/citations/19780025165
28.
Craig
,
R. R.
, Jr.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
29.
Sternchüss
,
A.
, and
Balmès
,
E.
,
2006
, “
On the Reduction of Quasi-Cyclic Disk Models With Variable Rotation Speeds
,”
International Conference on Noise and Vibration Engineering (
ISMA
), Katholieke Universiteit Leuven, Belgium, Sept. 18–20, pp.
3925
3939
.https://hal.archives-ouvertes.fr/hal-00266394
You do not currently have access to this content.