Abstract

Although the thermal-barrier coating (TBC) can protect the gas turbine components from the hot mainstream gas, it is not uncommon that the TBC partially blocks the film cooling holes during the spraying process. The film cooling hole blockage will alter the coolant flow behaviors and lead to a significant variation in film cooling performance. In this paper, a physical model of blockage holes including two key parameters of blockage ratios (B) and blockage angles (α), was proposed to analyze the effects of hole blockage on endwall film cooling performance, phantom cooling performance of vane pressure side surface (PS), and overall cooling performance. Based on a proposed double-coolant-temperature prediction method, the endwall film cooling effectiveness, phantom cooling effectiveness of the vane PS and area-averaged cooling effectiveness of an actual vane passage were numerically calculated and analyzed, for the common holes and blockage holes (three different blockage ratios of B and three different blockage angles of α) at the similarly realistic operating conditions of a gas turbine. Results indicated the hole blockage is pernicious to endwall film cooling performance, leading to a significant decrement of endwall film cooling effectiveness (up to 30% at B =0.4), where the decrement magnitudes increase with increasing the blockage ratios (B). Compared to the blockage ratios (B), the effects of blockage angle (α) on endwall film cooling effectiveness are secondary and slight (less than 10% in η). Nonetheless, the hole blockage is beneficial to phantom cooling performance of the vane PS, leading to an obvious enhancement (more than 40%) in area-averaged phantom cooling effectiveness with increasing blockage ratios (B), due to the increase of the local blowing ratio (BReff). The area-averaged cooling effectiveness including endwall film cooling and phantom cooling on PS, decreases with the increase of blockage angle (α), and the benefits of hole blockage in overall cooling performance are negative at α = 20 deg. This suggests that the overlarge blockage ratios and short blockage lengths (correspond to the blockage position near film cooling holes exit or large blockage angle of α), should be utmost avoided during the spraying process of the TBC, otherwise, the film cooling scheme designs, based on the geometry of the pristine holes, may be inefficient.

References

1.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.10.1115/1.4023826
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
3.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,”
ASME
Paper No. GT2013-94277. 10.1115/GT2013-94277
4.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
.10.2514/1.16344
5.
Bian
,
X.
,
Wang
,
Q.
,
Chen
,
Z.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Hybrid RANS/LES Study of Complex Turbulence Characteristics and Flow Mechanisms on the Highly-Loaded Turbine Endwall
,”
Aerosp. Sci. Technol.
,
94
, p.
105404
.10.1016/j.ast.2019.105404
6.
El-Gabry
,
L.
,
Xu
,
H.
,
Liu
,
K.
,
Chang
,
J.
, and
Fox
,
M.
,
2018
, “
Effect of Coolant Injection Angle on Nozzle Endwall Film Cooling: Experimental and Numerical Analysis in Linear Cascade
,”
ASME
Paper No. GT2018-85877. 10.1115/GT2018-85877
7.
Li
,
Z.
,
Bai
,
B.
,
Li
,
J.
,
Mao
,
S.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Endwall Heat Transfer and Cooling Performance of a Transonic Turbine Vane With Upstream Injection Flow
,”
ASME J. Turbomach.
,
144
(
4
), p.
041004
.10.1115/1.4052457
8.
Oke
,
R.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Vahlberg
,
R.
,
2000
, “
Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleedflow
,”
ASME
Paper No. GT2000-0214. 10.1115/GT2000-0214
9.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.10.1115/1.1811099
10.
Ornano
,
F.
, and
Povey
,
T.
,
2017
, “
Experimental and Computational Study of the Effect of Momentum-Flux Ratio on High-Pressure Nozzle Guide Vane Endwall Cooling Systems
,”
ASME J. Turbomach.
,
139
(
12
), p.
121002
.10.1115/1.4037756
11.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2011
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.10.1115/1.4003025
12.
Liu
,
K.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Platform Film-Cooling With Stator–Rotor Purge Flow and Compound-Angle Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041007
.10.1115/1.4026964
13.
Huang
,
Y.
,
Zhang
,
J. Z.
, and
Wang
,
C. H.
,
2020
, “
Multi-Objective Optimization of Round-to-Slot Film Cooling Holes on a Flat Surface
,”
Aerosp. Sci. Technol.
,
100
, p.
105737
.10.1016/j.ast.2020.105737
14.
Zamiri
,
A.
,
You
,
S. J.
, and
Chung
,
J. T.
,
2020
, “
Large Eddy Simulation of Unsteady Turbulent Flow Structures and Film-Cooling Effectiveness in a Laidback Fan-Shaped Hole
,”
Aerosp. Sci. Technol.
,
100
, p.
105793
.10.1016/j.ast.2020.105793
15.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Derdichizzi
,
A.
,
2005
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME
Paper No. GT2005-68544. 10.1115/GT2005-68544
16.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J. C.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
.10.1115/1.4042057
17.
Zhang
,
L. Z.
,
Yin
,
J.
,
Liu
,
K. V.
, and
Hee-Koo
,
M.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,”
ASME
Paper No. GT2015-42541. 10.1115/GT2015-42541
18.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2017
, “
Influence of the Upstream Slot Geometry on the Endwall Cooling and Phantom Cooling of Vane Suction Side Surface
,”
Appl. Therm. Eng.
,
121
, pp.
688
700
.10.1016/j.applthermaleng.2017.04.143
19.
Zhang
,
Y.
, and
Yuan
,
X.
,
2012
, “
Experimental Investigation of Turbine Phantom Cooling on Suction Side With Combustor-Turbine Leakage Gap Flow and Endwall Film Cooling
,”
ASME
Paper No. GT2012-69295. 10.1115/GT2012-69295
20.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.10.1126/science.1068609
21.
Davidson
,
F. T.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2012
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches
,”
ASME
Paper No. GT 2012-70029. 10.1115/2012-70029
22.
Evans
,
A. G.
,
Mumm
,
D. R.
,
Hutchinson
,
J. W.
,
Meier
,
G. H.
, and
Pettit
,
F. S.
,
2001
, “
Mechanisms Controlling the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
,
46
(
5
), pp.
505
553
.10.1016/S0079-6425(00)00020-7
23.
Kim
,
K. M.
,
Shin
,
S.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2011
, “
Influence of Material Properties on Temperature and Thermal Stress of Thermal Barrier Coating Near a Normal Cooling Hole
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5192
5199
.10.1016/j.ijheatmasstransfer.2011.08.026
24.
Kistenmacher
,
D. A.
,
Todd Davidson
,
F.
, and
Bogard
,
D. G.
,
2014
, “
Realistic Trench Film Cooling With a Thermal Barrier Coating and Deposition
,”
ASME J. Turbomach.
,
136
(
9
), p.
91002
.10.1115/1.4026613
25.
Colón
,
S.
,
Ricklick
,
M.
,
Nagy
,
D.
, and
Lafleur
,
A.
,
2019
, “
Geometric Effects of Thermal Barrier Coating Damage on Turbine Blade Temperatures
,”
ASME
Paper No. GT2019-90886. 10.1115/GT2019-90886
26.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
Effects of Surface Deposition, Hole Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film Cooling
,”
ASME J. Turbomach.
,
129
(
3
), pp.
599
607
.10.1115/1.2720485
27.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
(
2
), pp.
337
342
.10.1115/1.2841411
28.
Wang
,
F. Q.
,
Pu
,
J.
,
Wang
,
J. H.
, and
Xia
,
W. D.
,
2021
, “
Numerical Investigation of Effects of Blockage, Inclination Angle, and Hole-Size on Film Cooling Effectiveness at Concave Surface
,”
ASME J. Turbomach.
,
143
(
2
), p.
021007
.10.1115/1.4049786
29.
Bunker
,
R. S.
,
2000
, “
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,”
ASME
Paper No. GT2000-0244. 10.1115/GT2000-0244
30.
Na
,
S.
,
Cunha
,
F. J.
,
Chyu
,
M. K.
, and
Shih
,
T. I. P.
,
2006
, “
Effects of Coating Blockage and Deposit on Film-Cooling Effectiveness and Surface Heat Transfer
,”
AIAA
Paper No. 2006-0024.10.2514/6.2006-0024
31.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
.10.1115/1.4029879
32.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
.10.1115/1.4001366
33.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 1—Effect of Density Ratio
,”
ASME J. Turbomach.
,
144
(
5
), p.
051003
.10.1115/1.4052754
34.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling: Part 2—Effect of Combustor-NGV Misalignment
,”
ASME J. Turbomach.
,
144
(
5
), p.
051004
.10.1115/1.4052738
35.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.10.1115/1.4029098
36.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.10.1115/1.2841162
37.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W.
,
2022
, “
Turbine Vane Endwall Film Cooling and Pressure Side Phantom Cooling Performances With Upstream Coolant Flow at Various Injection Angles
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
11
), p.
111014
.10.1115/1.4054848
38.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), pp.
547
554
.10.1115/1.2185674
39.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2005
, “
Effects of Mid-Passage Gap, Endwall Misalignment and Roughness on Endwall Film-Cooling
,”
ASME
Paper No. GT2005-6890. 10.1115/GT2005-6890
40.
Arisi
,
A.
,
Mayo
,
D.
,
Li
,
Z.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Investigation of the Effect of Combustor-Nozzle Platform Misalignment on Endwall Heat Transfer at Transonic High Turbulence Conditions
,”
ASME
Paper No. GT2016-57763. 10.1115/GT2016-57763
41.
Gräf
,
L.
, and
Kleiser
,
L.
,
2012
, “
Flow-Field Analysis of Anti-Kidney Vortex Film Cooling
,”
J. Therm. Sci.
,
21
(
1
), pp.
66
76
.10.1007/s11630-012-0520-y
You do not currently have access to this content.