Abstract

An adaptive mesh refinement (AMR) method is demonstrated for Large Eddy Simulations (LES) of an industrial gas turbine combustor, the SGT-100 provided by Siemens Energy Industrial Turbomachinery Ltd. In this paper, the simcenterstar-ccm+® solver is used to dynamically refine a series of Large Eddy Simulations with a Flamelet Generated Manifold (FGM) combustion model as applied to the SGT-100. Mesh refinement criteria are defined using second gradients of mixture fraction and reaction progress. Two meshes are assessed with and without AMR. The results are then compared to a refined static mesh and experimental data. The accuracy and computational cost of the static and adaptively refined meshes are discussed. It is shown that AMR can provide close to 2× speed up compared to a refined static mesh with similar predictions of mean and RMS quantities of the flow field, flame temperature and major species.

References

1.
Welch
,
M.
,
2018
, “
Using the Fuel Flexibility of Gas Turbines to Decarbonise Power Generation
,”
Power Eng.-J. IDGTE
,
22
, pp.
5
9
.
2.
Moëll
,
D.
,
Lörstad
,
D.
, and
Bai
,
X.
,
2018
, “
LES of Hydrogen Enriched Methane/Air Combustion in the SGT-800 Burner at Real Engine Conditions
,”
ASME
Paper No. GT2018-76434.10.1115/GT2018-76434
3.
Karalus
,
M.
,
Thakre
,
P.
,
Goldin
,
G.
, and
Brandt
,
D.
,
2021
, “
Flamelet Versus Detailed Chemistry LES for a Liquid Fueled Gas-Turbine Combustor: A Comparison of Accuracy and Computational Cost
,”
ASME
Paper No. GT2021-59395.10.1115/GT2021-59395
4.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
453
482
.10.1146/annurev.fluid.38.050304.092133
5.
Karalus
,
M.
,
Krishnamoorthy
,
N.
,
Reynolds
,
B.
, and
Mallouppas
,
G.
,
2019
, “
An Assessment of the Implicit Non-Iterative PISO Solution Procedure for the Prediction of Combustor Performance
,”
ASME
Paper No. GT2019-90950.10.1115/GT2019-90950
6.
Hanke
,
J.
, and
Krcmar
,
M.
,
2020
, “
Adaptive Mesh Refinement of Hypersonic Shock and Wake Structures in Simcenter STAR-CCM+
,”
AIAA
Paper No. 2020-3227.10.2514/6.2020-3227
7.
Kroniger
,
D.
,
Horikawa
,
A.
,
Funke
,
H. H.
,
Pfaeffle
,
F.
,
Kishimoto
,
T.
, and
Okada
,
K.
,
2021
, “
Experimental and Numerical Investigation on the Effect of Pressure on Micromix Hydrogen Combustion
,”
ASME
Paper No. GT2021-58926.10.1115/GT2021-58926
8.
Benard
,
P.
,
Balarac
,
G.
,
Moureau
,
V.
,
Dobrzynski
,
C.
,
Lartigue
,
G.
, and
D'Angelo
,
Y.
,
2016
, “
Mesh Adaptation for Large-Eddy Simulations in Complex Geometries
,”
Int. J. Numer. Methods Fluids
,
81
(
12
), pp.
719
740
.10.1002/fld.4204
9.
Daviller
,
G.
,
Brebion
,
M.
,
Xavier
,
P.
,
Staffelbach
,
G.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2017
, “
A Mesh Adaptation Strategy to Predict Pressure Losses in LES of Swirled Flows
,”
Flow, Turbul. Combust.
,
99
(
1
), pp.
93
118
.10.1007/s10494-017-9808-z
10.
Xia
,
Y.
,
Verma
,
I.
,
Stopford
,
P.
, and
Sharkey
,
P.
,
2021
, “
Dynamic Mesh Adaption for Scale-Resolving Reacting Flow Simulations
,”
ASME
Paper No. GT2021-59100.10.1115/GT2021-59100
11.
Siemens Digital Industries Software
,
2021
, “Simcenter STAR-CCM+,” Version 2021.3, Siemens 2021, accessed Sept. 27, 2022, https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
12.
Sadasivuni
,
S. K.
,
Sanderson
,
V.
,
Bonaldo
,
A.
,
Bulat
,
G.
, and
Swaminathan
,
N.
,
2011
, “
Application of Scalar Dissipation Rate Modelling to Industrial Burners in Partially Premixed Regimes
,”
Proceedings of the European Combustion Meeting
, Cardiff, UK, June 27–July 1, pp.
1
6
.https://www.academia.edu/31228414/Application_of_Scalar_Dissipation_Rate_Modelling_to_Industrial_Burners_in_Partially_Premixed_Regimes
13.
Bulat
,
G.
,
Fedina
,
E.
,
Fureby
,
C.
,
Meier
,
W.
, and
Stopper
,
U.
,
2015
, “
Reacting Flow in an Industrial Gas Turbine Combustor: LES and Experimental Analysis
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3175
3183
. 10.1016/j.proci.2014.05.015
14.
Bulat
,
G.
,
2012
, “
Large Eddy Simulations of Reacting Swirling Flows in an Industrial Burner
,” Ph.D. thesis,
Department of Mechanical Engineering, Imperial College London
,
South Kensington, London, UK
.
15.
Stopper
,
U.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stohr
,
M.
,
Aigner
,
M.
, and
Bulat
,
G.
,
2013
, “
Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape
,”
Combust. Flame
,
160
(
10
), pp.
2103
2118
.10.1016/j.combustflame.2013.04.005
16.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
17.
Iss
,
R. I.
,
Gosman
,
A. D.
, and
Watkins
,
A. P.
,
1986
, “
The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme
,”
J. Comput. Phys.
,
62
(
1
), pp.
66
82
. 10.1016/0021-9991(86)90100-2
18.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
, et al., 1999, GRI-Mech 3.0, The Gas Research Institute, Chicago, IL, accessed Nov. 2021, http://combustion.berkeley.edu/gri-mech/
19.
Van Oijen
,
J.
, and
De Goey
,
L.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
20.
Mallouppas
,
G.
,
Goldin
,
G.
,
Zhang
,
Y.
,
Thakre
,
P.
, and
Rogerson
,
J.
,
2019
, “
Investigation of Flamelet Generated Manifold Reaction Source Term Closure Models Applied to an Industrial Gas Turbine
,”
ASME
Paper No. GT2019-90219.10.1115/GT2019-90219
21.
Mallouppas
,
G.
,
Goldin
,
G.
,
Zhang
,
Y.
,
Thakre
,
P.
,
Krishnamoorthy
,
N.
,
Rawat
,
R.
,
Gosman
,
D.
,
Rogerson
,
J.
, and
Bulat
,
G.
,
2017
, “
Investigation of an Industrial Gas Turbine Combustor and Pollutant Formation Using LES
,”
ASME
Paper No. GT2017-64744.10.1115/GT2017-64744
22.
Xia
,
Y.
,
2019
, “
Prediction of Thermoacoustic Instability in Gas Turbine Combustors
,” Ph.D. thesis,
Department of Mechanical Engineering, Imperial College London
,
South Kensington, London, UK
.
23.
Fredrich
,
D.
,
2019
, “
A Numerical Method for the Prediction of Combustion Instabilities
,” Ph.D. thesis,
Department of Mechanical Engineering, Imperial College London
,
South Kensington, London, UK
.
You do not currently have access to this content.