Abstract

While integrally bladed rotors in turbine engines have multiple benefits, they are more susceptible to vibration and as a result, high cycle fatigue failure. In response, damping treatments such as viscoelastic layers, hard coatings, and particle dampers have been utilized to reduce vibration of integrally bladed rotors and promote long service life. In recent experiments, nickel-based alloy 718 structural beams representative of turbine blades were manufactured via laser powder bed fusion (LPBF) with internal geometries containing unfused powder. Compared to fully fused beams, these beams with internal particle dampers have demonstrated a significant improvement in damping performance, suppressing vibrations by as much as 95%. However, the inherent damping of the particle dampers decreases as the strain amplitude increases when some of the unfused powder fuses to the walls of the pockets. This study investigates the effect of the location of the particle dampers within the beam on the sustainability of its damping performance. To compare the effect of the particle damper's location, the LPBF nickel-based alloy 718 beams are subjected to successive resonance dwells with increasing strain amplitude. After each dwell, the damping performance is assessed via the half-power bandwidth method of the frequency response function. Results from this study indicate that while the location of the particle dampers within the specimen does influence when the damping begins to degrade, it is not the optimal parameter for damping sustainability. The aim of this and future work is to improve the long-term damping performance and viability of the internal particle damper so that it can be more effectively utilized to extend the lifetime of turbomachinery components.

References

1.
Nashif
,
A. D.
,
Jones
,
D. I.
, and
Henderson
,
J. P.
,
1991
,
Vibration Damping
,
Wiley
,
New York
.
2.
Torvik
,
P. J.
,
Patsias
,
S.
, and
Tomlinson
,
G.
,
2002
, “
Characterizing the Damping Behaviour of Hard Coatings: A Comparison From Two Methodologies
,”
Proceedings of the Seventh National Turbine Engine High Cycle Fatigue Conference
, West Palm Beach, FL, May 14–17.
3.
Olson
,
S. E.
,
2003
, “
An Analytical Particle Damping Model
,”
J. Sound Vib.
,
264
(
5
), pp.
1155
1166
.10.1016/S0022-460X(02)01388-3
4.
López
,
I.
,
Busturia
,
J.
, and
Nijmeijer
,
H.
,
2004
, “
Energy Dissipation of a Friction Damper
,”
J. Sound Vib.
,
278
(
3
), pp.
539
561
.10.1016/j.jsv.2003.10.051
5.
Jones
,
D.
, and
Parin
,
M.
,
1972
, “
Technique for Measuring Damping Properties of Thin Viscoelastic Layers
,”
J. Sound Vib.
,
24
(
2
), pp.
201
210
.10.1016/0022-460X(72)90949-2
6.
Panossian
,
H. V.
,
1992
, “
Structural Damping Enhancement Via Non-Obstructive Particle Damping Technique
,”
ASME J. Vib. Acoust.
,
114
(
1
), pp.
101
105
.10.1115/1.2930221
7.
Torvik
,
P. J.
,
2011
, “
On Estimating System Damping From Frequency Response Bandwidths
,”
J. Sound Vib.
,
330
(
25
), pp.
6088
6097
.10.1016/j.jsv.2011.06.027
8.
Torvik
,
P. J.
, and
Langley
,
B.
,
2015
, “
Material Properties of Hard Coatings Developed for High Damping
,”
AIAA
Paper No. 2015-4195.10.2514/6.2015-4195
9.
Els
,
D.
,
2011
, “
Damping of Rotating Beams With Particle Dampers: Experimental Analysis
,”
AIAA J.
,
49
(
10
), pp.
2228
2238
.10.2514/1.J050984
10.
Nashif
,
A.
,
Torvik
,
P.
,
Desai
,
U.
,
Hansel
,
J.
, and
Henderson
,
J.
,
2008
, “
Increasing Gas Turbine Blade Damping Through Cavities Filled With Viscoelastic Materials
,”
J. Propul. Power
,
24
(
4
), pp.
741
750
.10.2514/1.35285
11.
Wu
,
C. J.
,
Liao
,
W. H.
, and
Wang
,
M. Y.
,
2004
, “
Modeling of Granular Particle Damping Using Multiphase Flow Theory of Gas-Particle
,”
ASME J. Vib. Acoust.
,
126
(
2
), pp.
196
201
.10.1115/1.1688763
12.
Petrov
,
E. P.
,
Zachariadis
,
Z.-I.
,
Beretta
,
A.
, and
Elliott
,
R.
,
2013
, “
A Study of Nonlinear Vibrations in a Frictionally Damped Turbine Bladed Disk With Comprehensive Modeling of Aerodynamic Effects
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
032504
.10.1115/1.4007871
13.
Gagnon
,
L.
,
Morandini
,
M.
, and
Ghiringhelli
,
G. L.
,
2019
, “
A Review of Particle Damping Modeling and Testing
,”
J. Sound Vib.
,
459
, p.
114865
.10.1016/j.jsv.2019.114865
14.
Lu
,
Z.
,
Wang
,
Z.
,
Masri
,
S. F.
, and
Lu
,
X.
,
2018
, “
Particle Impact Dampers: Past, Present, and Future
,”
Struct. Control Health Monit.
,
25
(
1
), p.
e2058
.10.1002/stc.2058
15.
Schmitz
,
T.
,
Betters
,
E.
, and
West
,
J.
,
2020
, “
Increased Damping Through Captured Powder in Additive Manufacturing
,”
Manuf. Lett.
,
25
, pp.
1
5
.10.1016/j.mfglet.2020.05.003
16.
Scott-Emuakpor
,
O.
,
George
,
T.
,
Runyon
,
B.
,
Holycross
,
C.
,
Langley
,
B.
,
Sheridan
,
L.
,
O'Hara
,
R.
,
Johnson
,
P.
, and
Beck
,
J.
,
2018
, “
Investigating Damping Performance of Laser Powder Bed Fused Components With Unique Internal Structures
,”
ASME
Paper No. GT2018-75977.10.1115/GT2018-75977
17.
Scott-Emuakpor
,
O.
,
George
,
T.
,
Runyon
,
B.
,
Langley
,
B.
,
Sheridan
,
L.
,
Holycross
,
C.
,
O'Hara
,
R.
, and
Johnson
,
P.
,
2019
, “
Forced-Response Verification of the Inherent Damping in Additive Manufactured Specimens
,”
Mechanics of Additive and Advanced Manufacturing
, Vol.
8
,
S.
Kramer
,
J. L.
Jordan
,
H.
Jin
,
J.
Carroll
, and
A. M.
Beese
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
81
86
.
18.
Scott-Emuakpor
,
O.
,
George
,
T.
,
Runyon
,
B.
, and
O'Hara
,
R.
,
2018
, “
Strain Dependence of Inherent Damping in 3D Printed Inconel 718
,”
Vibration Institute Annual Training Conference, Vibration Institute
, Oak Brook, IL, July.
19.
Scott-Emuakpor
,
O.
,
George
,
T.
,
Runyon
,
B.
,
Beck
,
J.
,
Sheridan
,
L.
,
Holycross
,
C.
, and
O'Hara
,
R.
,
2019
, “
Sustainability Study of Inherent Damping in Additively Manufactured Nickel Alloy
,”
AIAA J.
,
57
(
1
), pp.
456
461
.10.2514/1.J057608
20.
Scott-Emuakpor
,
O.
,
George
,
T.
,
Runyon
,
B.
,
Holycross
,
C.
,
Sheridan
,
L.
, and
O'Hara
,
R.
,
2020
, “
Assessing Additive Manufacturing Repeatability of Inherently Damped Nickel Alloy Components
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031011
.10.1115/1.4044314
21.
Scott-Emuakpor
,
O.
,
Beck
,
J.
,
Runyon
,
B.
, and
George
,
T.
,
2020
, “
Multi-Factor Model and Validation for Improving the Design of Damping in Additively Manufactured Components
,”
AIAA
Paper No. 2020-1631.10.2514/6.2020-1631
22.
Scott-Emuakpor
,
O.
,
Beck
,
J.
,
Runyon
,
B.
, and
George
,
T.
,
2020
, “
Validating a Multifactor Model for Damping Performance of Additively Manufactured Components
,”
AIAA J.
,
58
(
12
), pp.
5440
5447
.10.2514/1.J059608
23.
Scott-Emuakpor
,
O.
,
Sheridan
,
L.
,
Runyon
,
B.
, and
George
,
T.
,
2020
, “
Vibration Fatigue Assessment of Additive Manufactured Nickel Alloy With Inherent Damping
,”
ASME
Paper No. GT2020-14122.10.1115/GT2020-14122
24.
Goldin
,
A.
,
Scott-Emuakpor
,
O.
,
George
,
T.
,
Runyon
,
B.
, and
Cobb
,
R.
,
2021
, “
Structural Dynamic and Inherent Damping Characterization of Additively Manufactured Airfoil Components
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051022
.10.1115/1.4050022
25.
Scott-Emuakpor
,
O.
,
Schoening
,
A.
,
Goldin
,
A.
,
Beck
,
J.
,
Runyon
,
B.
, and
George
,
T.
,
2021
, “
Internal Geometry Effects on Inherent Damping Performance of Additively Manufactured Components
,”
AIAA J.
,
59
(
1
), pp.
379
385
.10.2514/1.J059709
26.
Kiracofe
,
D.
,
Postell
,
M.
,
Scott-Emuakpor
,
O.
,
Runyon
,
B.
,
George
., and
Tommy
,
J.
,
2021
, “
Discrete Element Method Simulations of Additively Manufactured Components With Integrated Particle Dampers
,”
ASME
Paper No. GT2021-58462.10.1115/GT2021-58462
27.
Rao
,
S.
,
2017
,
Mechanical Vibrations
,
Pearson Education
,
Upper Saddle River, NJ
.
28.
Meirovitch
,
L.
,
1997
,
Principles and Techniques of Vibrations
,
Prentice Hall
,
Upper Saddle River, NJ
.
29.
Torvik
,
P.
,
2003
, “
A Note on the Estimation of Nonlinear System Damping
,”
ASME J. Appl. Mech.
,
70
(
3
), pp.
449
450
.10.1115/1.1571859
30.
Els
,
D.
,
2009
, “
The Effectiveness of Particle Dampers Under Centrifugal Loads
,” Ph.D. thesis,
University of Stellenbosch
,
South Africa
.
You do not currently have access to this content.