Abstract

Recent interest in nonequilibrium plasma discharges as sources of ignition for the automotive industry has not yet been accompanied by the availability of dedicated models to perform this task in computational fluid dynamics (CFD) engine simulations. The need for a low-temperature plasma (LTP) ignition model has motivated much work in simulating these discharges from first principles. Most ignition models assume that an equilibrium plasma comprises the bulk of discharge kernels. LTP discharges, however, exhibit highly nonequilibrium behavior. In this work, a method to determine a consistent initialization of LTP discharge kernels for use in engine CFD codes like converge is proposed. The method utilizes first principles discharge simulations. Such an LTP kernel is introduced in a flammable mixture of air and fuel, and the subsequent plasma expansion and ignition simulation is carried out using a reacting flow solver with detailed chemistry. The proposed numerical approach is shown to produce results that agree with experimental observations regarding the ignitability of methane-air and ethylene-air mixtures by LTP discharges.

References

1.
Raizer
,
Y. P.
,
1983
,
Gas Discharge Physics
,
Springer
,
Berlin
.
2.
Ronney
,
P. D.
,
1994
, “
Laser Versus Conventional Ignition of Flames
,”
Opt. Eng.
,
33
(
2
), pp.
510
522
.10.1117/12.152237
3.
Eastwood
,
P.
,
2000
,
Critical Topics Exhaust Gas After Treatment
, U.S. Department of Energy, Oak Ridge, TN.https://www.osti.gov/etdeweb/biblio/20149090
4.
Quader
,
A. A.
,
1976
, “
What Limits Lean Operation in Spark Ignition Engines-Flame Initiation or Propagation?
,”
SAE Trans.
, 85, pp.
2374
2387
.10.4271/760760
5.
Lumley
,
J. L.
,
1999
,
Engines: An Introduction
,
Cambridge University Press
, Cambridge, UK.
6.
Enaux
,
B.
,
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Pera
,
C.
,
Angelberger
,
C.
, and
Poinsot
,
T.
,
2011
, “
Les Study of Cycle-to-Cycle Variations in a Spark Ignition Engine
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3115
3122
.10.1016/j.proci.2010.07.038
7.
Cetegen
,
B.
,
Teichman
,
K.
,
Weinberg
,
F.
, and
Oppenheim
,
A.
,
1980
, “
Performance of a Plasma Jet Igniter
,”
SAE Trans.
, 89, pp.
246
259
.10.4271/800042
8.
Wang
,
F.
,
Liu
,
J.
,
Sinibaldi
,
J.
,
Brophy
,
C.
,
Kuthi
,
A.
,
Jiang
,
C.
,
Ronney
,
P.
, and
Gundersen
,
M. A.
,
2005
, “
Transient Plasma Ignition of Quiescent and Flowing Air/Fuel Mixtures
,”
IEEE Trans. Plasma Sci.
,
33
(
2
), pp.
844
849
.10.1109/TPS.2005.845251
9.
Starikovskiy
,
A.
,
2015
, “
Physics and Chemistry of Plasma-Assisted Combustion
,”
Philos. Trans. R. Soc., A
, 373(2048), p.
20150074
.10.1098/rsta.2015.0074
10.
Maly
,
R.
, and
Vogel
,
M.
,
1979
, “
Initiation and Propagation of Flame Fronts in Lean CH4-Air Mixtures by the Three Modes of the Ignition Spark
,”
Symp. (Int.) Combust.
,
17
(
1
), pp.
821
831
.10.1016/S0082-0784(79)80079-X
11.
Pischinger
,
S.
, and
Heywood
,
J. B.
,
1990
, “
How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel Development in an SI-Engine
,”
SAE Trans.
, 99, pp.
53
73
.10.4271/900021
12.
EsgeeTech,
2021
, “VizGlow,” ESgeeTech, Austin, TX, accessed Apr. 15, 2021, https://esgeetech.com/products/vizglow-plasma-modeling/
13.
Teunissen, J.,
2021
, “Afivo-Streamer,” accessed Apr. 15, 2021, https://teunissen.net/afivo_streamer/
14.
Gururajan
,
V.
,
Scarcelli
,
R.
,
Karpatne
,
A.
,
Breden
,
D.
,
Raja
,
L.
,
Biswas
,
S.
, and
Ekoto
,
I.
,
2019
, “
A Computational Study of the Thermodynamic Conditions Leading to Autoignition in Nanosecond Pulsed Discharges
,”
ASME
Paper No. GTP-20-1285.10.1115/GTP-20-1285
15.
Scarcelli
,
R.
,
Wallner
,
T.
,
Som
,
S.
,
Biswas
,
S.
,
Ekoto
,
I.
,
Breden
,
D.
,
Karpatne
,
A.
, and
Raja
,
L. L.
,
2018
, “
Modeling Non-Equilibrium Discharge and Validating Transient Plasma Characteristics at Above-Atmospheric Pressure
,”
Plasma Sources Sci. Technol.
,
27
(
12
), p.
124006
.10.1088/1361-6595/aaf539
16.
Popov
,
N.
,
2001
, “
Investigation of the Mechanism for Rapid Heating of Nitrogen and Air in Gas Discharges
,”
Plasma Phys. Rep.
,
27
(
10
), pp.
886
896
.10.1134/1.1409722
17.
Oran
,
E. S.
, and
Boris
,
J. P.
, 2001,
Numerical Simulation of Reactive Flow
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
18.
Teunissen
,
J.
,
Sun
,
A.
, and
Ebert
,
U.
,
2014
, “
A Time Scale for Electrical Screening in Pulsed Gas Discharges
,”
J. Phys. D: Appl. Phys.
,
47
(
36
), p.
365203
.10.1088/0022-3727/47/36/365203
19.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.4.0, accessed Sept. 30, 2022, https://www.cantera.org
20.
Ansys,
2021
, “Ansys Chemkin-Pro Chemistry Simulation Software,” accessed Apr. 15, 2021, https://www.ansys.com/products/fluids/ansys-chemkin-pro
21.
Huiskamp
,
T.
,
Subramanian
,
S.
,
Gururajan
,
V.
,
Schroeder
,
W. P.
,
Schroeder
,
C. A.
,
Gundersen
,
M. A.
, and
Cronin
,
S. B.
,
2020
, “
Boosting the Energy Efficiency of a Nanosecond Pulsed Corona Plasma System With a Multiple-Wire Plasma Reactor
,”
IEEE Trans. Plasma Sci.
,
48
(
1
), pp.
245
257
.10.1109/TPS.2019.2956548
22.
Goldman
,
S.
,
1949
,
Transformation Calculus and Electrical Transients
,
Prentice Hall
, Hoboken, NJ.
23.
Spielman
,
R.
, and
Gryazin
,
Y.
,
2016
, “
Screamer: An Optimized Pulsed-Power Circuit-Analysis Tool
,” 2016 IEEE International Power Modulator and High Voltage Conference (
IPMHVC
),
San Francisco, CA, July 6–9
, pp.
269
274
.10.1109/IPMHVC.2016.8012884
24.
Luque
,
A.
, and
Ebert
,
U.
,
2014
, “
Growing Discharge Trees With Self-Consistent Charge Transport: The Collective Dynamics of Streamers
,”
New J. Phys.
,
16
(
1
), p.
013039
.10.1088/1367-2630/16/1/013039
25.
Teunissen
,
J.
,
2015
, “
3D Simulations and Analysis of Pulsed Discharges
,”
Ph.D. thesis
,
Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
.https://teunissen.net/files/phd_thesis/phd_thesis_teunissen_29_09_2015_small.pdf
26.
Shy
,
S.
,
Liu
,
C.
, and
Shih
,
W.
,
2010
, “
Ignition Transition in Turbulent Premixed Combustion
,”
Combust. Flame
,
157
(
2
), pp.
341
350
.10.1016/j.combustflame.2009.08.005
27.
Clavin
,
P.
,
1985
, “
Dynamic Behavior of Premixed Flame Fronts in Laminar and Turbulent Flows
,”
Prog. Energy Combust. Sci.
,
11
(
1
), pp.
1
59
.10.1016/0360-1285(85)90012-7
28.
Flitti
,
A.
, and
Pancheshnyi
,
S.
,
2009
, “
Gas Heating in Fast Pulsed Discharges in N2–O2 Mixtures
,”
Eur. Phys. J. Appl. Phys.
,
45
(
2
), p.
21001
.10.1051/epjap/2009011
29.
Olsen
,
H.
,
Edmonson
,
R.
, and
Gayhart
,
E.
,
1952
, “
Microchronometric Schlieren Study of Gaseous Expansion From an Electric Spark
,”
J. Appl. Phys.
,
23
(
10
), pp.
1157
1162
.10.1063/1.1702001
30.
Borghese
,
A.
,
D'Alessio
,
A.
,
Diana
,
M.
, and
Venitozzi
,
C.
,
1989
, “
Development of Hot Nitrogen Kernel, Produced by a Very Fast Spark Discharge
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1651
1659
. 10.1016/S0082-0784(89)80177-8
31.
Luque
,
A.
,
Ratushnaya
,
V.
, and
Ebert
,
U.
,
2008
, “
Positive and Negative Streamers in Ambient Air: Modelling Evolution and Velocities
,”
J. Phys. D: Appl. Phys.
,
41
(
23
), p.
234005
.10.1088/0022-3727/41/23/234005
32.
Achat
,
S.
,
Teisseyre
,
Y.
, and
Marode
,
E.
,
1992
, “
The Scaling of the Streamer-to-Arc Transition in a Positive Point-to-Plane Gap With Pressure
,”
J. Phys. D: Appl. Phys.
,
25
(
4
), pp.
661
668
.10.1088/0022-3727/25/4/012
33.
Starikovskiy
,
A. Y.
,
2015
, “
On the Role of “Hot-Atoms in Plasma-Assisted Ignition
,”
Philos. Trans. R. Soc., A
,
373
(
2048
), p.
20140343
.10.1098/rsta.2014.0343
34.
Gururajan
,
V.
, and
Egolfopoulos
,
F. N.
,
2017
, “
Transient Plasma Effects on the Autoignition of DME/O2/Ar and C3H8/O2/Ar Mixtures
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
4165
4174
.10.1016/j.proci.2016.06.010
35.
Monte Carlo Integration
, 2021, “Monte Carlo Integration Using gsl,” Monte Carlo Integration, accessed Apr. 15, 2021, https://www.gnu.org/software/gsl/doc/html/montecarlo.html
36.
Scarcelli
,
R.
,
Zhang
,
A.
,
Wallner
,
T.
,
Som
,
S.
,
Huang
,
J.
,
Wijeyakulasuriya
,
S.
,
Mao
,
Y.
,
Zhu
,
X.
, and
Lee
,
S.-Y.
,
2018
, “
Development of a Hybrid Lagrangian-Eulerian Model to Describe Spark-Ignition Processes at Engine-Like Turbulent Flow Conditions
,”
ASME
Paper No. ICEF2018-9690.10.1115/ICEF2018-9690
37.
Colin
,
O.
, and
Truffin
,
K.
,
2011
, “
A Spark Ignition Model for Large Eddy Simulation Based on an Fsd Transport Equation (ISSIM-LES)
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3097
3104
.10.1016/j.proci.2010.07.023
38.
Castela
,
M.
,
Fiorina
,
B.
,
Coussement
,
A.
,
Gicquel
,
O.
,
Darabiha
,
N.
, and
Laux
,
C. O.
,
2016
, “
Modelling the Impact of Non-Equilibrium Discharges on Reactive Mixtures for Simulations of Plasma-Assisted Ignition in Turbulent Flows
,”
Combust. Flame
,
166
, pp.
133
147
.10.1016/j.combustflame.2016.01.009
39.
Converge CFD Software, 2020, “
Converge Manual
,” accessed Apr. 15, 2021, https://convergecfd.com/
40.
G.P. Smith
,
Y. T.
, and
Wang
,
H.
,
2016
, “
Foundational Fuel Chemistry Model Version 1.0 (FFCM-1)
,” accessed Sept. 30, 2022, https://web.stanford.edu/group/haiwanglab/FFCM1/pages/FFCM1.html
41.
Fogleman, M.,
2021
, “SDF,” accessed Apr. 15, 2021, https://github.com/fogleman/sdf
42.
Ko
,
Y.
,
Arpaci
,
V. S.
, and
Anderson
,
R.
,
1991
, “
Spark Ignition of Propane-Air Mixtures Near the Minimum Ignition Energy: Part II. A Model Development
,”
Combust. Flame
,
83
(1–2), pp.
88
105
.10.1016/0010-2180(91)90205-P
43.
Law
,
C. K.
,
2010
,
Combustion Physics
,
Cambridge University Press
, Cambridge, UK.
44.
Ayachit
,
U.
,
2015
, “
The Paraview Guide: A Parallel Visualization Application
,” Paraview, accessed Sept. 30, 2022, https://www.paraview.org
45.
Pitt
,
P. L.
,
Clements
,
R.
, and
Topham
,
D.
,
1991
, “
The Early Phase of Spark Ignition
,”
Combust. Sci. Technol.
,
78
(
4–6
), pp.
289
314
.10.1080/00102209108951753
46.
Chomiak
,
J.
,
1979
, “
Flame Development From an Ignition Kernel in Laminar and Turbulent Homogeneous Mixtures
,”
Symp. (Int.) Combust.
,
17
(
1
), pp.
255
263
.10.1016/S0082-0784(79)80027-2
47.
Haley
,
R.
, and
Smy
,
P.
,
1989
, “
Electrically Induced Turbulence-the Short Duration Spark
,”
J. Phys. D: Appl. Phys.
,
22
(
2
), pp.
258
265
.10.1088/0022-3727/22/2/004
48.
Poinsot
,
T.
,
Veynante
,
D.
, and
Candel
,
S.
,
1991
, “
Quenching Processes and Premixed Turbulent Combustion Diagrams
,”
J. Fluid Mech.
,
228
, pp.
561
606
.10.1017/S0022112091002823
49.
Clavin
,
P.
, and
Graña-Otero
,
J. C.
,
2011
, “
Curved and Stretched Flames: The Two Markstein Numbers
,”
J. Fluid Mech.
,
686
, pp.
187
217
.10.1017/jfm.2011.318
50.
Lawson
,
R.
,
Gururajan
,
V.
,
Movaghar
,
A.
, and
Egolfopoulos
,
F. N.
,
2021
, “
Autoignition of Reacting Mixtures at Engine-Relevant Conditions Using Confined Spherically Expanding Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2285
2293
.10.1016/j.proci.2020.06.224
You do not currently have access to this content.