Abstract

Thermoacoustic instabilities in gas turbine engines are of increasing interest for design of future low-emission technology combustors. Numerical methods used to predict thermoacoustic instabilities often employ either fully compressible resource-intense computational fluid dynamics (CFD) simulations, or two-step approaches where source terms extracted from CFD simulations are supplied to subsequent computational aeroacoustics (CAA) simulations. This work demonstrates an analysis of self-excited thermoacoustic instabilities using a hybrid method based on runtime coupling of incompressible CFD and CAA simulations. A prior implementation for the computation of combustion noise through one-way coupling of CFD and CAA solvers has been extended to a two-way coupling that allows acoustics to influence the flow field. The resulting hybrid method couples acoustic and convective physical phenomena by using mean flow field quantities and the thermoacoustic energy source term obtained from the solution of the Navier–Stokes equations in the low Mach number limit as an input for the acoustic perturbation equations (APEs). The fluctuating acoustic quantities pressure and velocity obtained from the solution of the APE are in turn included in the solution of the low Mach number Navier–Stokes equations, influencing the convective dynamics of the flow field. The suitability of the present implementation to capture thermoacoustic feedback is demonstrated through analysis of the well-known self-excited instability observed in a Rijke tube. The results are presented and discussed in comparison with a fully compressible reference solution.

References

1.
Courtine
,
E.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2015
, “
DNS of Intrinsic Thermoacoustic Modes in Laminar Premixed Flames
,”
Combust. Flame
,
162
(
11
), pp.
4331
4341
.10.1016/j.combustflame.2015.07.002
2.
Lackhove
,
K.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2017
, “
Efficient Three Dimensional Time-Domain Combustion Noise Simulation of a Premixed Flame Using Acoustic Perturbation Equations and Incompressible LES
,”
ASME
Paper No. GT2017-63050.10.1115/GT2017-63050
3.
Ewert
,
R.
, and
Schröder
,
W.
,
2003
, “
Acoustic Perturbation Equations Based on Flow Decomposition Via Source Filtering
,”
J. Comput. Phys.
,
188
(
2
), pp.
365
398
.10.1016/S0021-9991(03)00168-2
4.
Bui
,
T. P.
,
Schröder
,
W.
,
Meinke
,
M.
,
Shalaby
,
H.
, and
Thévenin
,
D.
,
2006
, “
Source Term Evaluation of the APE-RF System Using DNS Data
,”
Proceedings of the European Conference on Computational Fluid Dynamics
, Egmond aan Zee, The Netherlands, Sept. 5–8, pp. 188/1–188/14.10.2514/6.2006-2678
5.
Herff
,
S.
,
Pausch
,
K.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2021
, “
Analysis of the Sound Sources of Lean Premixed Methane-Air Flames
,”
GAMM-Mitt.
,
45
(
1
), p.
e202200001
.10.1002/gamm.202200001
6.
Klenke
,
T.
,
Lo Presti
,
F.
,
Lackhove
,
K.
,
di Mare
,
F.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2017
, “
Two-Way Hybrid LES/CAA Approach Including Acoustic Feedback Loop for the Prediction of Thermoacoustic Instabilities in Technical Combustors
,”
ASME
Paper No. GT2017-63271.10.1115/GT2017-63271
7.
Lackhove
,
K.
,
2018
, “
Hybrid Noise Simulation for Enclosed Configurations
,”
Ph.D. thesis
,
Technische Universität Darmstadt
,
Darmstadt, Germany
, pp. 1–153.https://tuprints.ulb.tu-darmstadt.de/7611/
8.
Anand
,
M. S.
,
Eggels
,
R.
,
Staufer
,
M.
,
Zedda
,
M.
, and
Zhu
,
J.
,
2014
, “
An Advanced Unstructured-Grid Finite Volume Design System for Gas Turbine Combustion Analysis
,”
ASME
Paper No. GTINDIA2013-3537.10.1115/GTINDIA2013-3537
9.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
, Theoretical and Numerical Combustion,
Edwards
,
Philadelphia, PA
.https://books.google.co.in/books?id=cqFDkeVABYoC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
10.
Cantwell
,
C. D.
,
Moxey
,
D.
,
Comerford
,
A.
,
Bolis
,
A.
,
Rocco
,
G.
,
Mengaldo
,
G.
,
de Grazia
,
D.
,
Yakovlev
,
S.
,
Lombard
,
J.-E.
,
Ekelschot
,
D.
,
Jordi
,
B.
,
Xu
,
H.
,
Mohamied
,
Y.
,
Eskilsson
,
C.
,
Nelson
,
B.
,
Vos
,
P.
,
Biotto
,
C.
,
Kirby
,
R. M.
, and
Sherwin
,
S. J.
,
2015
, “
Nektar++: An Open-Source Spectral/hp Element Framework
,”
Comput. Phys. Commun.
,
192
, pp.
205
219
.10.1016/j.cpc.2015.02.008
11.
Geiser
,
G.
,
Nawroth
,
H.
,
Hosseinzadeh
,
A.
,
Zhang
,
F.
,
Bockhorn
,
H.
,
Habisreuther
,
P.
,
Janicka
,
J.
,
Paschereit
,
C. O.
, and
Schröder
,
W.
,
2014
, “
Thermoacoustics of a Turbulent Premixed Flame
,”
AIAA
Paper No. 2014-2476.10.2514/6.2014-2476
12.
Karniadakis
,
G. E.
, and Sherwin, S. J.,
1999
, Spectral/hp Element Methods for CFD,
Oxford University Press
,
Cary, NC
.https://www.researchgate.net/publication/229086770_Spectralhp_Element_Methods_for_CFD
13.
Quémerais
,
E.
,
2018
, “
La Bibliothèque de Couplage CWIPI—Coupling With Interpolation Parallel Interface
.”https://w3.onera.fr/cwipi/bibliotheque-couplage-cwipi
14.
Rijke
,
P. L.
,
1859
, “
Notiz Über Eine Neue Art, Die in Einer an Beiden Enden Offenen Röhre Enthaltene Luft in Schwingungen zu Versetzen
,”
Ann. Phys.
,
183
(
6
), pp.
339
343
.10.1002/andp.18591830616
15.
Lapeyre
,
C. J.
,
2015
, “
Numerical Study of Flame Stability, Stabilization and Noise in a Swirl-Stabilized Combustor Under Choked Conditions
,”
Ph.D. thesis
,
Université de Toulouse
,
Toulouse, France
.https://tel.archives-ouvertes.fr/tel-01382449/document
16.
Matveev
,
K.
, and
Culick
,
F.
,
2002
, “
Experimental and Mathematical Modeling of Thermoacoustic Instabilities in a Rijke Tube
,”
AIAA
Paper No. 2002-1013.10.2514/6.2002-1013
17.
Nicoud
,
F.
, and
Poinsot
,
T.
,
2005
, “
Thermoacoustic Instabilities: Should the Rayleigh Criterion Be Extended to Include Entropy Changes?
,”
Combust. Flame
,
142
(
1–2
), pp.
153
159
.10.1016/j.combustflame.2005.02.013
18.
Paschke
,
D.
,
2018
, “
Determination of Heat Transfer Functions for a Rijke Tube Using 3D CFD and Their Application in 1D CFD
,” Master's thesis,
Technische Universität Berlin
,
Berlin, Germany
.
19.
Moura
,
R. C.
,
Aman
,
M.
,
Peiró
,
J.
, and
Sherwin
,
S. J.
,
2020
, “
Spatial Eigenanalysis of Spectral/hp Continuous Galerkin Schemes and Their Stabilisation Via DG-Mimicking Spectral Vanishing Viscosity for High Reynolds Number Flows
,”
J. Comput. Phys.
,
406
, p.
109112
.10.1016/j.jcp.2019.109112
20.
Courtine
,
E.
,
Selle
,
L.
,
Nicoud
,
F.
,
Polifke
,
W.
,
Silva
,
C.
,
Bauerheim
,
M.
, and
Poinsot
,
T.
,
2014
, “
Causality and Intrinsic Thermoacoustic Instability Modes
,”
Proceedings of the Summer Program, Center for Turbulence Research
, Stanford, CA, July 6–Aug. 1, pp.
169
178
.https://web.stanford.edu/group/ctr/Summer/SP14/06_Combustion/07_courtine.pdf
You do not currently have access to this content.