Abstract

Nonlinear eigenvalue problems (NLEVPs) arise in thermoacoustics by considering the temporal evolution of small perturbations in the relevant governing equations. In this work, two solution strategies are compared: (i) a contour-integration-based method that guarantees to provide all eigenvalues in a given domain and (ii) a method that approximates the NLEVP by a rational eigenvalue problem (REVP), which is generally easier to solve. The focus lies on numerical speed, the completeness of the computed spectrum, and the appearance of spurious modes, i.e., modes that are not part of the original spectrum but appear as a result of the approximation. To this end, two prototypical thermoacoustic systems are considered: a single-flame Rijke tube and an annular model combustor. The comparison of both methods is preceded by a detailed analysis of the user-defined input parameters in the contour-integration-based method. Our results show that both methods can resolve all types of considered eigenvalues with sufficient accuracy for applications. However, the recast linear problem is overall faster to solve and allows a priori precision estimates—unlike the contour-integration-based method. Spurious modes as a by-product of the NLEVP approximation are found to play a minor role, and recommendations are given on how to eliminate them.

References

1.
Lieuwen
,
T.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
(Progress in Astronautics and Aeronautics, Vol.
210
),
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
3.
Wolf
,
P.
,
Balakrishnan
,
R.
,
Staffelbach
,
G.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2012
, “
Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers
,”
Flow, Turbul. Combust.
,
88
(
1–2
), pp.
191
206
.10.1007/s10494-011-9367-7
4.
Avdonin
,
A.
,
Meindl
,
M.
, and
Polifke
,
W.
,
2019
, “
Thermoacoustic Analysis of a Laminar Premixed Flame Using a Linearized Reacting Flow Solver
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5307
5314
.10.1016/j.proci.2018.06.142
5.
Gikadi
,
J.
,
Sattelmayer
,
T.
, and
Peschiulli
,
A.
,
2012
, “
Effects of the Mean Flow Field on the Thermo-Acoustic Stability of Aero-Engine Combustion Chambers
,”
ASME
Paper No. GT2012-69612.10.1115/GT2012-69612
6.
Meindl
,
M.
,
Albayrak
,
A.
, and
Polifke
,
W.
,
2020
, “
A State-Space Formulation of a Discontinuous Galerkin Method for Thermoacoustic Stability Analysis
,”
J. Sound Vib.
,
481
, p.
115431
.10.1016/j.jsv.2020.115431
7.
Hofmeister
,
T.
,
Hummel
,
T.
,
Berger
,
F.
,
Klarmann
,
N.
, and
Sattelmayer
,
T.
,
2020
, “
Elimination of Numerical Damping in the Stability Analysis of Non-Compact Thermoacoustic Systems With Linearized Euler Equations
,”
ASME
Paper No. GT2020-16051.10.1115/GT2020-16051
8.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.10.2514/1.24933
9.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi-Burner Combustion Systems
,”
ASME
Paper No. GT2003-38688.10.1115/GT2003-38688
10.
Bothien
,
M.
,
Moeck
,
J.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2007
, “
Time Domain Modelling and Stability Analysis of Complex Thermoacoustic Systems
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
5
), pp.
657
668
.10.1243/09576509JPE384
11.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. Acust.
,
102
(
5
), pp.
824
833
.10.3813/AAA.918997
12.
Zhao
,
D.
, and
Morgans
,
A. S.
,
2009
, “
Tuned Passive Control of Combustion Instabilities Using Multiple Helmholtz Resonators
,”
J. Sound Vib.
,
320
(
4–5
), pp.
744
757
.10.1016/j.jsv.2008.09.006
13.
Moeck
,
J. P.
,
Paul
,
M.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Instabilities in an Annular Rijke Tube
,”
ASME
Paper No. GT2010-23577.10.1115/GT2010-23577
14.
Mensah
,
G. A.
,
Magri
,
L.
,
Silva
,
C. F.
,
Buschmann
,
P. E.
, and
Moeck
,
J. P.
,
2018
, “
Exceptional Points in the Thermoacoustic Spectrum
,”
J. Sound Vib.
,
433
, pp.
124
128
.10.1016/j.jsv.2018.06.069
15.
Mehrmann
,
V.
, and
Voss
,
H.
,
2004
, “
Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods
,”
GAMM-Mitt.
,
27
(
2
), pp.
121
152
.10.1002/gamm.201490007
16.
Güttel
,
S.
, and
Tisseur
,
F.
,
2017
, “
The Nonlinear Eigenvalue Problem
,”
Acta Numer.
,
26
, pp.
1
94
.10.1017/S0962492917000034
17.
Mensah
,
G. A.
,
Buschmann
,
P. E.
, and
Orchini
,
A.
,
2022
, “
Iterative Solvers for the Thermoacoustic Nonlinear Eigenvalue Problem and Their Convergence Properties
,”
Int. J. Spray Combust. Dyn.
, 14(1–2), pp. 30–41.10.1177/17568277221084464
18.
Buschmann
,
P. E.
,
Mensah
,
G. A.
,
Nicoud
,
F.
, and
Moeck
,
J. P.
,
2020
, “
Solution of Thermoacoustic Eigenvalue Problems With a Noniterative Method
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031022
.10.1115/1.4045076
19.
Kopitz
,
J.
, and
Polifke
,
W.
,
2008
, “
CFD-Based Application of the Nyquist Criterion to Thermo-Acoustic Instabilities
,”
J. Comput. Phys.
,
227
(
14
), pp.
6754
6778
.10.1016/j.jcp.2008.03.022
20.
Saad
,
Y.
,
2011
,
Numerical Methods for Large Eigenvalue Problems
, revised ed., Vol.
66
,
SIAM
, Philadelphia, PA.
21.
Polifke
,
W.
,
2020
, “
Modeling and Analysis of Premixed Flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Combust. Sci.
,
79
, p.
100845
.10.1016/j.pecs.2020.100845
22.
Crocco
,
L.
, and
Cheng
,
S. I.
,
1956
,
Theory of Combustion Instability in Liquid Propellant Rocket Motors
(AGARDograph, Vol.
8
),
Butterworths Scientific Publications
,
New York
.
23.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
24.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
25.
Polifke
,
W.
,
2014
, “
Black-Box System Identification for Reduced Order Model Construction
,”
Ann. Nucl. Energy
,
67
, pp.
109
128
.10.1016/j.anucene.2013.10.037
26.
Subramanian
,
P.
,
Blumenthal
,
R. S.
,
Sujith
,
R.
, and
Polifke
,
W.
,
2015
, “
Distributed Time Lag Response Functions for the Modelling of Combustion Dynamics
,”
Combust. Theory Modell.
,
19
(
2
), pp.
223
237
.10.1080/13647830.2014.1001438
27.
Gustavsen
,
B.
, and
Semlyen
,
A.
,
1999
, “
Rational Approximation of Frequency Domain Responses by Vector Fitting
,”
IEEE Trans. Power Delivery
,
14
(
3
), pp.
1052
1061
.10.1109/61.772353
28.
Cumpsty
,
N. A.
, and
Marble
,
F. E.
,
1977
, “
The Interaction of Entropy Fluctuations With Turbine Blade Rows; A Mechanism of Turbojet Engine Noise
,”
Proc. R. Soc. A
,
357
(
1690
), pp.
323
344
.10.1098/rspa.1977.0171
29.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J. F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
30.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
31.
Buschmann
,
P. E.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2020
, “
Intrinsic Thermoacoustic Modes in an Annular Combustion Chamber
,”
Combust. Flame
,
214
, pp.
251
262
.10.1016/j.combustflame.2019.11.006
32.
Beyn
,
W.-J.
,
2012
, “
An Integral Method for Solving Nonlinear Eigenvalue Problems
,”
Linear Algebra Its Appl.
,
436
(
10
), pp.
3839
3863
.10.1016/j.laa.2011.03.030
33.
Van Barel
,
M.
, and
Kravanja
,
P.
,
2016
, “
Nonlinear Eigenvalue Problems and Contour Integrals
,”
J. Comput. Appl. Math.
,
292
, pp.
526
540
.10.1016/j.cam.2015.07.012
34.
Keldysh
,
M. V.
,
1971
, “
On the Completeness of the Eigenfunctions of Some Classes of Non-Selfadjoint Linear Operators
,”
Russ. Math. Surv.
,
26
(
4
), pp.
15
44
.10.1070/RM1971v026n04ABEH003985
35.
Prosperetti
,
A.
,
2011
,
Advanced Mathematics for Applications
,
Cambridge University Press
, Cambridge, UK.
36.
Alnæs
,
M.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2015
, “
The FEniCS Project Version 1.5
,”
Arch. Numer. Software
,
3
(
100
), pp.
9
23
.10.11588/ans.2015.100.20553
37.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
38.
Harris
,
C. R.
,
Millman
,
K. J.
,
van der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
, et al.,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.10.1038/s41586-020-2649-2
39.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2015
, “
A New Pattern of Instability Observed in an Annular Combustor: The Slanted Mode
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3237
3244
.10.1016/j.proci.2014.06.029
40.
Laera
,
D.
,
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
,
Camporeale
,
S.
, and
Candel
,
S.
,
2017
, “
Impact of Heat Release Distribution on the Spinning Modes of an Annular Combustor With Multiple Matrix Burners
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
051505
.10.1115/1.4035207
41.
Laera
,
D.
,
Schuller
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments
,”
Combust. Flame
,
184
, pp.
136
152
.10.1016/j.combustflame.2017.05.021
42.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2021
, “
Acoustic-Convective Interference in Transfer Functions of Methane/Hydrogen and Pure Hydrogen Flames
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121017
.10.1115/1.4051960
43.
Schmid
,
M.
,
Blumenthal
,
R.
,
Schulze
,
M.
,
Polifke
,
W.
, and
Sattelmayer
,
T.
,
2013
, “
Quantitative Stability Analysis Using Real Frequency Response Data
,”
ASME
Paper No. GT2013-95459.10.1115/GT2013-95459
44.
Su
,
Y.
, and
Bai
,
Z.
,
2011
, “
Solving Rational Eigenvalue Problems Via Linearization
,”
SIAM J. Matrix Anal. Appl.
,
32
(
1
), pp.
201
216
.10.1137/090777542
45.
Meindl
,
M.
,
Emmert
,
T.
, and
Polifke
,
W.
,
2016
, “Efficient Calculation of Thermoacoustic Modes Utilizing State-Space Models,” 23rd International Congress on Sound and Vibration (
ICSV23
), Athens, Greece, July 10–14, pp.
3006
3013
.https://www.researchgate.net/publication/322077228_Efficient_calculation_of_thermoacoustic_modes_utilizing_state-space_models
46.
Stewart
,
G. W.
,
2002
, “
A Krylov–Schur Algorithm for Large Eigenproblems
,”
SIAM J. Matrix Anal. Appl.
,
23
(
3
), pp.
601
614
.10.1137/S0895479800371529
47.
Stewart
,
G. W.
,
2002
, “
Addendum to ‘A Krylov–Schur Algorithm for Large Eigenproblems’
,”
SIAM J. Matrix Anal. Appl.
,
24
(
2
), pp.
599
601
.10.1137/S0895479802403150
48.
Hernandez
,
V.
,
Roman
,
J. E.
, and
Vidal
,
V.
,
2005
, “
SLEPc: A Scalable and Flexible Toolkit for the Solution of Eigenvalue Problems
,”
ACM Trans. Math. Software
,
31
(
3
), pp.
351
362
.10.1145/1089014.1089019
49.
Davis
,
T. A.
,
2004
, “
Algorithm 832: UMFPACK V4.3—An Unsymmetric-Pattern Multifrontal Method
,”
ACM Trans. Math. Software
,
30
(
2
), pp.
196
199
.10.1145/992200.992206
You do not currently have access to this content.