Abstract

Multistage compressors are widely used in aero-engines, gas turbines, and industrial compressors. However, many inevitable geometric/condition uncertainties will lead to low manufacturing qualified rate and severe performance degradation of multistage compressors. There might be hundreds of uncertainty variables simultaneously, so the “curse of dimensionality” problem has seriously constrained the uncertainty quantification (UQ) study in multistage compressors. In this paper, a feature selection method based on interpretable machine learning and bidirectional search is developed to reduce the dimensionality in a multistage compressor UQ study. The method is applied to a three-stage compressor and reduces the uncertainties dimensionality from 292 to 41 and 66 for mass flow rate and efficiency prediction. Consequently, the required sample size is reduced from 1674 to 160 with the model accuracy almost unchanged. For the first time, this study realizes the UQ modeling study on the high dimensional problem of a multistage compressor. In addition, significant stage-by-stage uncertainty propagation is found in the compressor. The last stage has the most significant efficiency deviation, which is significantly affected by the geometric uncertainty of the first two stages. Therefore, traditional studies, which usually simplify the multistage compressor UQ problem to a single cascade/row level, may seriously underestimate the uncertainty effect due to the neglect of stage-by-stage propagation. This study not only reveals the necessity for direct UQ study of multistage compressors but also reduces the computational cost, which lays a foundation for the uncertainty control of multistage compressors in engineering practice.

References

1.
Ju
,
Y.
,
Liu
,
Y.
,
Jiang
,
W.
, and
Zhang
,
C.
,
2021
, “
Aerodynamic Analysis and Design Optimization of a Centrifugal Compressor Impeller Considering Realistic Manufacturing Uncertainties
,”
Aerosp. Sci. Technol.
,
115
, p.
106787
.10.1016/j.ast.2021.106787
2.
Wang
,
J.
, and
Zheng
,
X.
,
2020
, “
Review of Geometric Uncertainty Quantification in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
7
), p.
070801
.10.1115/1.4047179
3.
Hergt
,
A.
,
Klinner
,
J.
,
Steinert
,
W.
,
Grund
,
S.
,
Beversdorff
,
M.
,
Giebmanns
,
A.
, and
Schnell
,
R.
,
2015
, “
The Effect of an Eroded Leading Edge on the Aerodynamic Performance of a Transonic Fan Blade Cascade
,”
ASME J. Turbomach.
,
137
(
2
), p.
021006
.10.1115/1.4028215
4.
Giebmanns
,
A.
,
Schnell
,
R.
,
Steinert
,
W.
,
Hergt
,
A.
,
Nicke
,
E.
, and
Werner-Spatz
,
C.
,
2012
, “
Analyzing and Optimizing Geometrically Degraded Transonic fan Blades by Means of 2D and 3D Simulations and Cascade Measurements
,”
ASME
Paper No. GT2012-69064.10.1115/GT2012-69064
5.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
, Chap. 3,
Longman Scientific and Technical Publications
,
UK
.
6.
Ghisu
,
T.
,
Parks
,
G. T.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
,
2011
, “
Robust Design Optimization of Gas Turbine Compression Systems
,”
J. Propuls. Power
,
27
(
2
), pp.
282
295
.10.2514/1.48965
7.
Garzon
,
V. E.
,
2003
, “
Probabilistic Aerothermal Design of Compressor Airfoils
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.https://www.researchgate.net/publication/279838457_Probabilistic_aerothermal_design_of_compressor_airfoils
8.
Maria Mazzoni
,
C.
,
Ahlfeld
,
R.
,
Rosic
,
B.
, and
Montomoli
,
F.
,
2018
, “
Uncertainty Quantification of Leakages in a Multistage Simulation and Comparison With Experiments
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021110
.10.1115/1.4037983
9.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2012
, “
Impact of Manufacturing Variability and Nonaxisymmetry on High-Pressure Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032504
.10.1115/1.4004404
10.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.10.1080/00401706.1987.10488205
11.
Nobile
,
F.
,
Tempone
,
R.
, and
Webster
,
C. G.
,
2008
, “
A Sparse Grid Stochastic Collocation Method for Partial Differential Equations With Random Input Data
,”
SIAM J. Numer. Anal.
,
46
(
5
), pp.
2309
2345
.10.1137/060663660
12.
Luo
,
J.
,
Xia
,
Z.
, and
Liu
,
F.
,
2021
, “
Robust Design Optimization Considering Inlet Flow Angle Variations of a Turbine Cascade
,”
Aerosp. Sci. Technol.
,
116
, p.
106893
.10.1016/j.ast.2021.106893
13.
Wang
,
J.
,
He
,
X.
,
Wang
,
B.
, and
Zheng
,
X.
,
2021
, “
Shapley Additive Explanations of Multi-Geometrical Variable Coupling Effect in Transonic Compressor
,”
ASME J. Eng. Gas Turbines Power
, 144(4), p.
041015
.10.1115/1.4053322
14.
Wang
,
J.
,
Wang
,
B.
,
Yang
,
H.
,
Sun
,
Z.
,
Zhou
,
K.
, and
Zheng
,
X.
,
2022
, “
Compressor Geometric Uncertainty Quantification at Conditions From Near Choke to Near Stall
,”
Chin. J. Aeronaut.
, epub.
15.
Sallee
,
G. P.
,
1978
, “
Performance Deterioration Based on Existing (Historical) Data JT9D Jet Engine Diagnostics Program
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No. NASA CR-135448.
16.
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
, and
Motiwala
,
M.
,
2001
, “
Gas Turbine Performance Deterioration
,”
Proceedings of the 30th Turbomachinery Symposium, Turbomachinery Laboratories
,
Texas A&M University
,
Houston, TX
, Sept. 17–20, pp.
139
176
.10.21423/R19Q1P
17.
Haykin
,
S. S.
, and
Haykin
,
S. S.
,
2009
,
Neural Networks and Learning Machines
,
Prentice Hall
,
New York
.
18.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.10.2514/6.92-0439
19.
Taylor
,
J. V.
,
Conduit
,
B.
,
Dickens
,
A.
,
Hall
,
C.
,
Hillel
,
M.
, and
Miller
,
R. J.
,
2019
, “
Predicting the Operability of Damaged Compressors Using Machine Learning
,”
ASME J. Turbomach.
, 142(5), p. 051010.10.1115/1.4046658
20.
Tang
,
X.
,
Wang
,
Z.
,
Xiao
,
P.
,
Peng
,
R.
, and
Liu
,
X.
,
2020
, “
Uncertainty Quantification Based Optimization of Centrifugal Compressor Impeller for Aerodynamic Robustness Under Stochastic Operational Conditions
,”
Energy
,
195
, p.
116930
.10.1016/j.energy.2020.116930
21.
Ribeiro
,
M. T.
,
Singh
,
S.
, and
Guestrin
,
C.
,
2016
, “
Model-Agnostic Interpretability of Machine Learning
,” arXiv Preprint
arXiv:160605386
.10.48550/arXiv.1606.05386
You do not currently have access to this content.