Abstract

Ceramic matrix composites (CMCs) offer great potential for developing lighter and more efficient aero-engines. Due to their high-temperature capability, CMCs are mainly used in the hot gas section in order to replace cooled metallic components and thus save cooling air. Especially CMC vanes for high-pressure turbines (HPTs) have been researched and tested in the past. A realistic design approach for cooled CMC vanes is the so-called shell and spar concept. The application of such vanes in HPTs as inlet guide vanes (IGVs) at constant rotor inlet temperature (T41) enables performance and emissions benefits which are assessed by means of a reference engine in this paper. Compared to metallic IGVs, more temperature-resistant CMC IGVs require significantly less cooling air and generate lower cooling losses. A quantitative comparison will be presented. Consequently, the redesign of the reference engine to the setting of a hybrid HPT leads to a reduction in thrust specific fuel consumption (TSFC) by 0.23% at cruise conditions. Additionally, there is potential to extract the IGV cooling air at a lower pressure level, increasing the cruise TSFC gain to 0.41%. In the course of the redesign process, the turbine inlet temperature (T4) is reduced by 50 K in order to reach the same T41 with a lower IGV coolant mass flow. Regarding emissions, this leads to a decreased production of nitrogen oxides (NOx). Hence, several NOx emissions parameters can be reduced by more than 4%.

References

1.
DiCarlo
,
J. A.
, and
van Roode
,
M.
,
2006
, “
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
,” ASME Paper No. GT2006-90151. 10.1115/GT2006-90151
2.
DiCarlo
,
J. A.
,
2014
, “
Advances in SiC/SiC Composites for Aero-Propulsion
,”
Ceramic Matrix Composites
,
N. P.
Bansal
and
J.
Lamon
, eds.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
217
235
.
3.
Naslain
,
R. R.
,
2016
, “
SiC-Matrix Composites: Tough Ceramics for Thermostructural Application in Different Fields
,”
Engineered Ceramics - Current Status and Future Prospects
,
T.
Ohji
and
M.
Singh
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
142
159
.
4.
Corman
,
G. S.
, and
Luthra
,
K. L.
,
2005
, “
Silicon Melt Infiltrated Ceramic Composites (HiPerCompTM)
,”
Handbook of Ceramic Composites
,
N. P.
Bansal
, ed.,
Kluwer Academic Publishers
,
New York
, pp.
99
115
.
5.
Corman
,
G. S.
, and
Luthra
,
K. L.
,
2018
, “
Development History of GE's Prepreg Melt Infiltrated Ceramic Matrix Composite Material and Applications
,”
Comprehensive Composite Materials II, Volume 5
,
P. W. R.
Beaumont
and
C. H.
Zweben
, eds.,
Cambridge
,
Amsterdam, Oxford
, pp.
325
337
.
6.
DiCarlo
,
J. A.
,
2014
, “
Advances in SiC/SiC Composites for Aero-Propulsion
,”
Ceramic Matrix Composites - Materials, Modeling and Technology
,
N. P.
Bansal and
J.
Lamon
, eds.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
217
235
.
7.
Lee
,
K. N.
,
2014
, “
Environmental Barrier Coatings for SiC/SiC
,”
Ceramic Matrix Composites
,
N. P.
Bansal and
J.
Lamon
, eds., John Wiley & Sons, Inc.,
Hoboken, NJ
, pp.
430
451
.
8.
Tejero-Martin
,
D.
,
Bennett
,
C.
, and
Hussain
,
T.
,
2021
, “
A Review on Environmental Barrier Coatings: History, Current State of the Art and Future Developments
,”
J. Eur. Ceram. Soc.
,
41
(
3
), pp.
1747
1768
.10.1016/j.jeurceramsoc.2020.10.057
9.
Eaton
,
H. E.
,
Linsey
,
G. D.
,
Sun
,
E. Y.
,
More
,
K. L.
,
Kimmel
,
J. B.
,
Price
,
J. R.
, and
Miriyala
,
N.
,
2001
, “
EBC Protection of SiC/SiC Composites in the Gas Turbine Combustion Environment: Continuing Evaluation and Refurbishment Considerations
,” ASME Paper No. 2001-GT-0513. 10.1115/2001-GT-0513
10.
Kimmel
,
J.
,
Price
,
J.
,
More
,
K.
,
Tortorelli
,
P.
,
Sun
,
E.
, and
Linsey
,
G.
,
2003
, “
The Evaluation of CFCC Liners After Field Testing in a Gas Turbine – IV
,” ASME Paper No. GT2003-38920. 10.1115/GT2003-38920
11.
Turcer
,
L. R.
,
Sengupta
,
A.
, and
Padture
,
N. T.
,
2021
, “
Low Thermal Conductivity in High-Entropy Rare-Earth Pyrosilicate Solid-Solutions for Thermal Environmental Barrier Coatings
,”
Scr. Mater.
,
191
, pp.
40
45
.10.1016/j.scriptamat.2020.09.008
12.
Zhu
,
D.
,
Ohji
.,
T.
, and
Singh
,
M.
,
2016
, “
Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composite Turbine Components
,”
Engineered Ceramics - Current Status and Future Prospects
, John Wiley & Sons, Inc.,
Hoboken
, NJ, pp.
142
159
.
13.
Wehrel
,
P.
,
2022
, “
Technological Level of CMC Components for Stationary Gas Turbines and Aero-Engines
,”
German Aerospace Center (DLR)
,
Cologne, Germany
, Report No. DLR-IB-AT-KP-2022-32.https://elib.dlr.de/186166/
14.
Verrilli
,
M.
,
Calomino
,
A.
,
Robinson
,
R. C.
, and
Thomas
,
D. J.
,
2004
, “
Ceramic Matrix Composite Vane Subelement Testing in a Gas Turbine Environment
,” ASME Paper No. GT2004-53970. 10.1115/GT2004-53970
15.
Vedula
,
V.
,
Shi
,
J.
,
Jarmon
,
D.
,
Ochs
,
S.
,
Oni
,
L.
,
Lawton
,
T.
,
Green
,
K.
,
Prill
,
L.
,
Schaff
,
J.
,
Linsey
,
G.
, and
Zadrozny
,
G.
,
2005
, “
Ceramic Matrix Composite Turbine Vanes for Gas Turbine Engines
,” ASME Paper No. GT2005-68229. 10.1115/GT2005-68229
16.
Halbig
,
M. C.
,
Jaskowiak
,
M. H.
,
Kiser
,
J. D.
, and
Zhu
,
D.
,
2013
, “
Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications
,” AIAA Paper No. 2013-0539. 10.1115/2013-0539
17.
Delvaux
,
J.
, and
Weber
,
J.
,
2021
, “
High Temperature CMC Nozzles for 65% Efficiency
,”
GE Gas Power
,
Schenectady, NY
, Report No. DE-FE0024006.10.2172/1837448
18.
Steibel
,
J.
,
2019
, “
Ceramic Matrix Composites Taking Flight at GE Aviation
,”
Am. Ceram. Soc. Bull.
,
98
(
3
), pp.
30
34
.https://ceramics.org/wp-content/uploads/2019/03/April-2019_Feature.pdf
19.
MacArthur
,
C. D.
,
1999
, “
Advanced Aero-Engine Turbine Technologies and Their Application to Industrial Gas Turbines
,”
14th International Symposium on Air Breathing Engines
, Florence, Italy, Sept. 5–10, Paper No. ISABE 99–715.
20.
Grondahl
,
C. M.
, and
Tsuchiya
,
T.
,
2001
, “
Performance Benefit Assessment of Ceramic Components in an MS9001FA Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
513
519
.10.1115/1.1335476
21.
Boyle
,
R. J.
,
Parikh
,
A. H.
, and
Nagpal
,
V. K.
,
2015
, “
Design Concepts for Cooled Ceramic Composite Turbine Vane
,”
NASA Glenn Research Center
,
Cleveland, OH
, Report No.
2015-218390
.https://ntrs.nasa.gov/citations/20150001428
22.
Hartsel
,
J. E.
,
1972
, “
Prediction of Effects of Mass-Transfer Cooling on the Blade-Row Efficiency of Turbine Airfoils
,” AIAA Paper No. 72-11.https://arc.aiaa.org/doi/10.2514/6.1972-11
23.
Young
,
J. B.
, and
Wilcock
,
R. C.
,
2002
, “
Modeling the Air-Cooled Gas Turbine: Part 2 – Coolant Flows and Losses
,”
ASME J. Turbomach.
,
124
(
2
), pp.
214
221
.10.1115/1.1415038
24.
Town
,
J.
,
Straub
,
D.
,
Black
,
J.
,
Thole
,
K. A.
, and
Shih
,
T. I.-P.
,
2018
, “
State-of-the-Art Cooling Technology for a Turbine Rotor Blade
,”
ASME J. Turbomach.
,
140
(
7
), p. 071007.10.1115/1.4039942
25.
Rätzer-Scheibe
,
H.-J.
, and
Schulz
,
U.
,
2007
, “
The Effects of Heat Treatment and Gas Atmosphere on the Thermal Conductivity of APS and EB-PVD PYSZ Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
201
(
18
), pp.
7880
7888
.10.1016/j.surfcoat.2007.03.028
26.
Krüger
,
W.
, and
Hüther
,
W.
,
1989
, “
Metal Ceramic Guide Vanes New Design Concept
,” ASME Paper No. 89-GT-334. 10.1115/89-GT-334
27.
Tsuchiya
,
T.
,
Furuse
,
Y.
,
Yoshino
,
S.
,
Chikami
,
R.
,
Tsukuda
,
Y.
, and
Mori
,
M.
,
1996
, “
Development of Air-Cooled Ceramic Nozzles for a Power-Generating Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
717
723
.10.1115/1.2816986
28.
Wang
,
C.
,
Wang
,
L.
, and
Sundén
,
B.
,
2015
, “
A Novel Control of Jet Impingement Heat Transfer in Cross-Flow by a Vortex Generator Pair
,”
Int. J. Heat Mass Transfer
,
88
, pp.
82
90
.10.1016/j.ijheatmasstransfer.2015.04.056
29.
Chen
,
L.
,
Brakmann
,
R. G. A.
,
Weigand
,
B.
,
Rodriguez
,
J.
,
Crawford
,
M.
, and
Poser
,
R.
,
2017
, “
Experimental and Numerical Heat Transfer Investigation of an Impingement Jet Array With V-Ribs on the Target Plate and on the Impingement Plate
,”
Int. J. Heat Fluid Flow
,
68
, pp.
126
138
.10.1016/j.ijheatfluidflow.2017.09.005
30.
Brakmann
,
R. G.
,
Brose
,
N.
,
Carvalho
,
F.
,
Chargui
,
S.
, and
Guarino
,
R.
,
2023
, “
A Numerical Analysis of Cross-Flow Reinforced Impingement Cooling Through a U-Shaped Turbulator
,” ASME Paper No. GT2023-101097. 10.1115/GT2023-101097
31.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
,
2001
, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
487
494
.10.1115/1.1373398
32.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion - Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
.
33.
Reitenbach
,
S.
,
Vieweg
,
M.
,
Becker
,
R.
,
Hollmann
,
C.
,
Wolters
,
F.
,
Schmeink
,
J.
,
Otten
,
T.
, and
Siggel
,
M.
,
2020
, “
Collaborative Aircraft Engine Preliminary Design Using a Virtual Engine Platform, Part A: Architecture and Methodology
,” AIAA Paper No. 2020-0867. 10.2514/6.2020-0867
34.
Krumme
,
A.
,
2016
, “
Performance Prediction and Early Design Code for Axial Turbines and Its Application in Research and Predesign
,” ASME Paper No. GT2016-56082. 10.1115/GT2016-56082
35.
Schöffler
,
R.
,
Grunwitz
,
C.
, and
Brakmann
,
R. G.
,
2023
, “
A Semi-Empirical Model for Conceptual Turbine Vane Cooling Design and Optimization
,” ASME Paper No. GT2023-103061. 10.1115/GT2023-103061
36.
Vieweg
,
M.
,
Hollmann
,
C.
,
Reitenbach
,
S.
,
Schnoes
,
M.
,
Behrendt
,
T.
,
Krumme
,
A.
,
Meier zu Ummeln
,
R.
, and
Otten
,
T.
,
2020
, “
Collaborative Aircraft Engine Preliminary Design Using a Virtual Engine Platform, Part B: Application
,” AIAA Paper No. 2020-0124. 10.2514/6.2020-0124
37.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance.
Blackwell Science
,
Oxford, UK
.
38.
Gaunter
,
J. W.
,
1980
, “
Algorithm for Calculating Turbine Cooling Flow and the Resulting Decrease in Turbine Efficiency
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No. 81453.https://ntrs.nasa.gov/citations/19800011581
39.
Kurzke
,
J.
, and
Halliwell
,
I.
,
2018
,
Propulsion and Power - An Exploration of Gas Turbine Performance Modeling
,
Springer Nature
,
Cham, Switzerland
.
40.
Holland
,
M. J.
, and
Thake
,
T. F.
,
1980
, “
Rotor Blade Cooling in High Pressure Turbines
,”
J. Aircr.
,
17
(
6
), pp.
412
418
.10.2514/3.44668
41.
Wehrel
,
P.
, and
Carvalho
,
F.
,
2023
, “
Cooling Model Calibration in a Collaborative Turbine Preliminary Design Process Using the NASA Energy Efficient Engine – Part I: 0D Performance Modeling
,”
13th International Gas Turbine Congress
, Kyoto, Japan, Nov. 26–Dec. 1.
42.
Carvalho
,
F.
,
Wehrel
,
P.
,
Grunwitz
,
C.
,
Schöffler
,
R.
, and
Brakmann
,
R. G.
,
2023
, “
Cooling Model Calibration in a Collaborative Turbine Preliminary Design Process Using the NASA Energy Efficient Engine – Part II: 1D Turbine Modeling
,”
13th International Gas Turbine Congress
, Kyoto, Japan, Nov. 26–Dec. 1.
43.
Halls
,
G. A.
,
1967
, “
Air Cooling of Turbine Blades and Vanes - An Account of the History and Development of Gas Turbine Cooling
,”
Aircr. Eng. Aerosp. Technol.
,
39
(
8
), pp.
4
14
.10.1108/eb034284
44.
Drela
,
M.
, and
Youngren
,
H.
,
2008
, “
A User's Guide to MISES 2.63
,”
MIT Aerospace Computational Design Laboratory
, Massachusetts Institute of Technology,
Cambridge, MA
, User Report.https://web.mit.edu/drela/Public/web/mises/mises.pdf
45.
Matsushita
,
T.
,
Fecht
,
H. J.
,
Wunderlich
,
R. K.
,
Egry
,
I.
, and
Seetharaman
,
S.
,
2009
, “
Studies of the Thermophysical Properties of Commercial CMSX-4 Alloy
,”
J. Chem. Eng. Data
,
54
(
9
), pp.
2584
2592
.10.1021/je900132m
46.
Madden
,
P.
, and
Park
,
K.
,
2003
, “
Methodology for Predicting NOx Emissions at Altitude Conditions From Ground Level Engine Emissions and Performance Test Information
,” Rolls Royce, London, UK, Report No. DNS 90713.
47.
European Union Aviation Safety Agency (EASA),
2021
, “
ICAO Aircraft Engine Emissions Databank
,”
EASA
,
Cologne, Germany
.https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-944 databank
48.
Häßy
,
J.
, and
Schmeink
,
J.
,
2022
, “
Knowledge-Based Conceptual Design Methods for Geometry and Mass Estimation of Rubber Aero Engines
,”
33th International Congress Council of the Aeronautical Sciences
, Stockholm, Sweden, Sept. 4–9, Paper No. ICAS2022_0497.https://www.icas.org/ICAS_ARCHIVE/ICAS2022/data/preview/ICAS2022_0497.htm
49.
Tilston
,
J.
,
Larkman
,
J.
,
Plohr
,
M.
,
Doepelheuer
,
A.
,
Lischer
,
T.
, and
Zarzalis
,
N.
,
2003
, “
Future Engine Cycle Prediction and Emissions Study
,” QinetiQ, London, UK, Report No.
G4RD-CT-2000-00383
.https://cordis.europa.eu/project/id/G4RD-CT-2000-00383/de
50.
Plohr
,
M.
,
Lecht
,
M.
,
Otten
,
T.
,
Döpelheuer
,
A.
, and
Hemmer
,
H.
,
2006
, “
Aero-Engine Technology to Cope With ACARE Goals
,”
25th International Congress Council of the Aeronautical Sciences
,
Hamburg, Germany
, Sept. 3–8, Paper No. ICAS 2006-5.4.5.https://www.icas.org/ICAS_ARCHIVE/ICAS2006/ABSTRACTS/605.HTM
51.
International Civil Aviation Organization (ICAO)
,
2017
,
Environmental Protection - Annex 16 to the Convention on International Civil Aviation - Volume II Aircraft Engine Emissions
,
ICAO
,
Montreal, QC, Canada
.
You do not currently have access to this content.