Abstract

Hydrogen as an essential part of future decarbonization of the energy industry makes it a crucial necessity to replace conventional, natural gas based concepts in gas turbine combustion. This paper presents an experimental study of a multi-tube jet flame burner. The study is carried out with natural gas and pure hydrogen fuel at gas turbine relevant conditions at atmospheric pressure. To identify key differences between hydrogen-air and natural gas–air flames on the overall robustness and flame flashback behavior, air bulk velocity (80–120 m/s), adiabatic flame temperature (1235–2089 K) and air inlet temperature (623–673 K) are varied over a wide range, covering a range of Reynolds numbers of 10,000–20,000. Depending on flame temperature, two different flame shapes are observed for natural gas–air flames. The shape of the hydrogen-air flame changes less over the range of flame temperatures tested, but is generally more compact. The process of fuel-air mixing is further investigated by concentration distribution measurements in a water tunnel setup. Therefore, planar laser-induced fluorescence is utilized for visualization. The measured concentration distributions confirm the overall good mixing quality but also give an explanation on the observed flashback behavior of the different burner designs at reacting tests. The findings of the study are composed in a flashback correlation combining the observed flashback drivers for the burner configurations investigated.

References

1.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
2.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
3.
Ćosić
,
B.
,
Wassmer
,
D.
,
Kluß
,
D.
,
Jaeschke
,
A.
,
Reichel
,
T.
, and
Paschereit
,
C. O.
,
2022
, “
Experimental and Numerical Advancement of the MGT Combustor Towards Higher Hydrogen Capabilities
,”
ASME
Paper No. GT2022-82110.10.1115/GT2022-82110
4.
Magnusson
,
R.
, and
Andersson
,
M.
,
2021
, “
Operation of SGT-600 (24 MW) DLE Gas Turbine With Over 60% H2 in Natural Gas
,”
ASME
Paper No. GT2020-16332.10.1115/GT2020-16332
5.
Ciani
,
A.
,
Bothien
,
M.
,
Bunkute
,
B.
,
Wood
,
J.
, and
Früchtel
,
G.
,
2019
, “
Superior Fuel and Operational Flexibility of Sequential Combustion in Ansaldo Energia Gas Turbines
,”
J. Global Power Propul. Soc.
,
3
, pp.
630
638
.10.33737/jgpps/110717
6.
Funke
,
H. H.-W.
,
Beckmann
,
N.
,
Keinz
,
J.
, and
Horikawa
,
A.
,
2021
, “
30 Years of Dry-Low-NOx Micromix Combustor Research for Hydrogen-Rich Fuels–an Overview of Past and Present Activities
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071002
.10.1115/1.4049764
7.
Kroniger
,
D.
,
Horikawa
,
A.
,
Okada
,
K.
, and
Ashida
,
Y.
,
2022
, “
Novel Fuel Injector Geometry for Enhancing the Fuel Flexibility of a Dry Low NOx MicroMix Flame
,”
ASME
Paper No. GT2022-83025.10.1115/GT2022-83025
8.
Koomen
,
J.
,
Dammers
,
T.
,
Demougeot
,
N.
,
Stuttaford
,
P.
,
Heinze
,
J.
,
Stockhausen
,
G.
, and
Fleing
,
C.
,
2022
, “
High Pressure Testing With Optical Diagnostics of a Hydrogen Retrofit Solution to Eliminate Carbon Emissions
,”
ASME
Paper No. GT2022-82652.10.1115/GT2022-82652
9.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
, et al.,
2010
, “
FLOX® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503
.10.1115/1.4001825
10.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
002001
.10.1115/1.4007733
11.
Asai
,
T.
,
Dodo
,
S.
,
Koizumi
,
H.
,
Takahashi
,
H.
,
Yoshida
,
S.
, and
Inoue
,
H.
,
2011
, “
Effects of Multiple-Injection-Burner Configurations on Combustion Characteristics for Dry Low-NOx Combustion of Hydrogen-Rich Fuels
,”
ASME
Paper No. GT2011-45295.10.1115/GT2011-45295
12.
Witzel
,
B.
,
Moëll
,
D.
,
Parsania
,
N.
,
Yilmaz
,
E.
, and
Koenig
,
M.
,
2022
, “
Development of a Fuel Flexible H2-Natural Gas Gas Turbine Combustion Technology Platform
,”
ASME
Paper No. GT2022-82881.10.1115/GT2022-82881
13.
Zhang
,
F.
,
Zirwes
,
T.
,
Nawroth
,
H.
,
Habisreuther
,
P.
,
Bockhorn
,
H.
, and
Paschereit
,
C. O.
,
2017
, “
Combustion-Generated Noise: An Environment-Related Issue for Future Combustion Systems
,”
Energy Technol.
,
5
(
7
), pp.
1045
1054
.10.1002/ente.201600526
14.
Dunn
,
M. J.
,
Masri
,
A. R.
, and
Bilger
,
R. W.
,
2007
, “
A New Piloted Premixed Jet Burner to Study Strong Finite-Rate Chemistry Effects
,”
Combust. Flame
,
151
(
1–2
), pp.
46
60
.10.1016/j.combustflame.2007.05.010
15.
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2016
, “
Flashback Propensity of Turbulent Hydrogen–Air Jet Flames at Gas Turbine Premixer Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061506
.10.1115/1.4031761
16.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
(
2
), pp.
75
97
.10.1063/1.1723808
17.
Hoferichter
,
V.
,
Mohammadzadeh Keleshtery
,
P.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Matsumura
,
Y.
,
2016
, “
Influence of Boundary Layer Air Injection on Flashback of Premixed Hydrogen-Air Flames
,”
ASME
Paper No. GT2016-56156.10.1115/GT2016-56156
18.
Baumgartner
,
G.
,
Boeck
,
L. R.
, and
Sattelmayer
,
T.
,
2016
, “
Experimental Investigation of the Transition Mechanism From Stable Flame to Flashback in a Generic Premixed Combustion System With High-Speed Micro-Particle Image Velocimetry and Micro-PLIF Combined With Chemiluminescence Imaging
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021501
.10.1115/1.4031227
19.
Reumschüssel
,
J. M.
,
von Saldern
,
J. G. R.
,
Kaiser
,
T. L.
,
Reichel
,
T.
,
Beuth
,
J. P.
,
Ćosić
,
B.
,
Genin
,
F.
, et al.,
2021
, “
NOx Emission Modelling for Lean Premixed Industrial Combustors With a Diffusion Pilot Burner
,”
ASME
Paper No. GT2021-59071.10.1115/GT2021-59071
20.
Terhaar
,
S.
,
Bobusch
,
B. C.
, and
Paschereit
,
C. O.
,
2012
, “
Effects of Outlet Boundary Conditions on the Reacting Flow Field in a Swirl-Stabilized Burner at Dry and Humid Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111501
.10.1115/1.4007165
21.
Schulz
,
C.
, and
Sick
,
V.
,
2005
, “
Tracer-LIF Diagnostics: Quantitative Measurement of Fuel Concentration, Temperature and Fuel/Air Ratio in Practical Combustion Systems
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
75
121
.10.1016/j.pecs.2004.08.002
22.
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2012
, “
Increasing the Passive Scalar Mixing Quality of Jets in Crossflow With Fluidics Actuators
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021503
.10.1115/1.4004373
23.
Danckwerts
,
P. V.
,
1952
, “
The Definition and Measurement of Some Characteristics of Mixtures
,”
Flow Turbul. Combust.
,
3
, pp.
279
296
.10.1007/BF03184936
24.
Peters
,
N.
,
1999
, “
The Turbulent Burning Velocity for Large-Scale and Small-Scale Turbulence
,”
J. Fluid Mech.
,
384
, pp.
107
132
.10.1017/S0022112098004212
25.
Russo
,
F.
, and
Basse
,
N. T.
,
2016
, “
Scaling of Turbulence Intensity for Low-Speed Flow in Smooth Pipes
,”
Flow Meas. Instrum.
,
52
, pp.
101
114
.10.1016/j.flowmeasinst.2016.09.012
26.
Aleyasin
,
S. S.
,
Fathi
,
N.
,
Tachie
,
M. F.
,
Vorobieff
,
P.
, and
Koupriyanov
,
M.
,
2017
, “
Experimental-Numerical Analysis of Turbulent Incompressible Isothermal Jets
,”
ASME
Paper No. FEDSM2017-69418.10.1115/FEDSM2017-69418
27.
Spalding
,
D. B.
,
1955
, “
Gas Turbines II: Some Fundamentals of Combustion
,”
J. R. Aeronaut. Soc.
,
59
(
538
), pp.
714
714
.10.1017/S036839310012807X
28.
Beuth
,
J. P.
,
Reumschüssel
,
J. M.
,
von Saldern
,
J. G.
,
Wassmer
,
D.
,
Ćosić
,
B.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2023
, “
Thermoacoustic Characterization of a Premixed Multi Jet Burner for Hydrogen and Natural Gas Combustion
,”
ASME
Paper No. GT2023-104112.10.1115/GT2023-104112
29.
Douglas
,
C. M.
,
Emerson
,
B. L.
,
Lieuwen
,
T. C.
,
Martz
,
T.
,
Steele
,
R.
, and
Noble
,
B.
,
2022
,
NOx Emissions From Hydrogen-Methane Fuel Blends
, Georgia Institute of Technology, Atlanta, GA.10.35090/gatech/65963
30.
Garan
,
N.
,
Dybe
,
S.
,
Paschereit
,
C. O.
, and
Djordjevic
,
N.
,
2023
, “
Consistent Emission Correction Factors Applicable to Novel Energy Carriers and Conversion Concepts
,”
Fuel
,
341
, p.
127658
.10.1016/j.fuel.2023.127658
31.
Vance
,
F. H.
,
Shoshin
,
Y.
,
de Goey
,
L. P. H.
, and
van Oijen
,
J. A.
,
2022
, “
Quantifying the Impact of Heat Loss, Stretch and Preferential Diffusion Effects to the Anchoring of Bluff Body Stabilized Premixed Flames
,”
Combust. Flame
,
237
, p.
111729
.10.1016/j.combustflame.2021.111729
32.
Gruber
,
A.
,
Sankaran
,
R.
,
Hawkes
,
E. R.
, and
Chen
,
J. H.
,
2010
, “
Turbulent Flame–Wall Interaction: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
658
, pp.
5
32
.10.1017/S0022112010001278
33.
Duan
,
Z.
,
Shaffer
,
B.
, and
McDonell
,
V.
,
2013
, “
Study of Fuel Composition, Burner Material and Tip Temperature Effects on Flashback of Enclosed Jet Flame
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121504
.10.1115/1.4025129
34.
Shaffer
,
B.
,
Duan
,
Z.
, and
McDonell
,
V.
,
2013
, “
Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011502
.10.1115/1.4007345
35.
Vance
,
F. H.
,
de Goey
,
L. P. H.
, and
van Oijen
,
J. A.
,
2022
, “
Development of a Flashback Correlation for Burner-Stabilized Hydrogen-Air Premixed Flames
,”
Combust. Flame
,
243
, p.
112045
.10.1016/j.combustflame.2022.112045
36.
Gruber
,
A.
,
Richardson
,
E. S.
,
Aditya
,
K.
, and
Chen
,
J. H.
,
2018
, “
Direct Numerical Simulations of Premixed and Stratified Flame Propagation in Turbulent Channel Flow
,”
Phys. Rev. Fluids
,
3
(
11
), p.
110507
.10.1103/PhysRevFluids.3.110507
You do not currently have access to this content.