Abstract

Knowledge of flame responses to acoustic perturbations is of utmost importance to predict thermoacoustic instabilities in gas turbine combustors. However, measuring transfer functions linking acoustic quantities upstream and downstream of flames are very challenging in practical systems and these measurements can significantly deviate from state-of-the-art models. Moreover, there is a lack of studies investigating the effect of hydrogen enrichment on the response of natural gas (NG) flames. In this work, measurements of flame transfer matrices (FTMs) of turbulent H2/NG flames in an atmospheric combustor featuring an axial swirler burner have been performed, allowing us to unravel the transition between FTM in fully premixed (FP) and in technically premixed (TP) conditions. Furthermore, imaging of OH* chemiluminescence and OH-planar laser induced fluorescence are obtained for characterizing the topology of the flame for varying H2 fraction and mixing conditions. Transfer matrices are measured using the multimicrophone method for H2 fractions ranging from 12% to 43% in power. Afterward, the flame transfer functions (FTFs), which linearly relate the coherent fluctuations of the heat release rate to the acoustic velocity oscillations, are obtained from the FTM by using the Rankine–Hugoniot jump conditions across the flame. Using the OH* chemiluminescence intensity as a surrogate for the heat release rate, the FTF based on this optical measurement is also extracted and compared to the one exclusively obtained with the multimicrophone method. As expected, the two different methods are in very good agreement for the FP case and significantly differ for the TP case. Indeed, chemiluminescence fluctuations cannot be directly linked to heat release rate fluctuations when the acoustic forcing induces equivalence ratio fluctuations at the flame, making the optical method unusable for TP configurations. We also show that the two methods agree in the high end of the explored excitation frequency range and we provide an explanation to this intriguing finding. Moreover, we investigate the sensitivity of the FTM measurement to the estimate of the speed of sound in the rig in FP conditions. Finally, the measured FTFs are fitted with FTF models based on multiple distributed time delays. This allows us to explain the frequency dependence and the hydrogen fraction dependence of the gain and the phase in FP and TP conditions.

References

1.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
2.
ETN Global
, 2020, “
Hydrogen Gas Turbines, the Path Towards a Zero-Carbon Gas Turbine
,” ETN Global, Brussels, Belgium, accessed December 10, 2022, https://etn.global/wp-content/uploads/2020/02/ETN-Hydrogen-Gas-Turbines-report.pdf
3.
Yusaf
,
T.
,
Fernandes
,
L.
,
Abu Talib
,
A. R.
,
Altarazi
,
Y. S. M.
,
Alrefae
,
W.
,
Kadirgama
,
K.
,
Ramasamy
,
D.
,
Jayasuriya
,
A.
,
Brown
,
G.
,
Mamat
,
R.
,
Dhahad
,
H. A.
,
Benedict
,
F.
, and
Laimon
,
M.
,
2022
, “
Sustainable Aviation–Hydrogen Is the Future
,”
Sustainability
,
14
(
1
), p.
548
.10.3390/su14010548
4.
Koroll
,
G.
,
Kumar
,
R.
, and
Bowles
,
E.
,
1993
, “
Burning Velocities of Hydrogen-Air Mixtures
,”
Combust. Flame
,
94
(
3
), pp.
330
340
.10.1016/0010-2180(93)90078-H
5.
Palies
,
P.
,
Ilak
,
M.
, and
Cheng
,
R.
,
2017
, “
Transient and Limit Cycle Combustion Dynamics Analysis of Turbulent Premixed Swirling Flames
,”
J. Fluid Mech.
,
830
, pp.
681
707
.10.1017/jfm.2017.575
6.
Aguilar
,
J. G.
,
Æsøy
,
E.
, and
Dawson
,
J. R.
,
2022
, “
The Influence of Hydrogen on the Stability of a Perfectly Premixed Combustor
,”
Combust. Flame
,
245
, p.
112323
.10.1016/j.combustflame.2022.112323
7.
Guiberti
,
T. F.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.10.1016/j.proci.2014.06.016
8.
Oztarlik
,
G.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2020
, “
Suppression of Instabilities of Swirled Premixed Flames With Minimal Secondary Hydrogen Injection
,”
Combust. Flame
,
214
, pp.
266
276
.10.1016/j.combustflame.2019.12.032
9.
Schuller
,
T.
,
Poinsot
,
T.
, and
Candel
,
S.
,
2020
, “
Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions
,”
J. Fluid Mech.
,
894
, p. P1.https://www.cambridge.org/core/journals/journal-offluid-mechanics/article/dynamics-and-control-of-premixed-combustion-systems-based-onflame-transfer-and-describing-functions/2C35CED793DD182084AE51A6BEB95C25
10.
Ghani
,
A.
, and
Polifke
,
W.
,
2021
, “
Control of Intrinsic Thermoacoustic Instabilities Using Hydrogen Fuel
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6077
6084
.10.1016/j.proci.2020.06.151
11.
Garcia
,
A. M.
,
Le Bras
,
S.
,
Prager
,
J.
,
Häringer
,
M.
, and
Polifke
,
W.
,
2022
, “
Large Eddy Simulation of the Dynamics of Lean Premixed Flames Using Global Reaction Mechanisms Calibrated for CH4-H2 Fuel Blends
,”
Phys. Fluids
,
34
(
9
), p.
095105
.10.1063/5.0098898
12.
Abbot
,
D.
,
Giannotta
,
A.
,
Sun
,
X.
,
Gauthier
,
P.
, and
Sethi
,
V.
,
2021
, “
Thermoacoustic Behaviour of a Hydrogen Micromix Aviation Gas Turbine Combustor Under Typical Flight Conditions
,”
ASME
Paper No. GT2021-59844.10.1115/GT2021-59844
13.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
14.
Wiseman
,
S.
,
Gruber
,
A.
, and
Dawson
,
J.
,
2022
, “
Flame Transfer Functions for Turbulent, Premixed, Ammonia-Hydrogen-Nitrogen-Air Flames
,”
ASME J. Eng. Gas Turbines Power
, 145(3), p.
031015
.10.1115/1.4055754
15.
Schuermans
,
B.
,
2003
, “
Modelling and Control of Thermoacoustic Instabilities
,”
Ph.D. thesis
,
EPFL
,
Lausanne, Switzerland
.https://core.ac.uk/download/pdf/147900077.pdf
16.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F. O.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831. 10.1115/GT2004-53831
17.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2000
, “
Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
765
773
.10.1016/S0082-0784(00)80279-9
18.
Higgins
,
B.
,
McQuay
,
M.
,
Lacas
,
F.
,
Rolon
,
J.-C.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2001
, “
Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed, Laminar Flames
,”
Fuel
,
80
(
1
), pp.
67
74
.10.1016/S0016-2361(00)00069-7
19.
Lauer
,
M.
, and
Sattelmayer
,
T.
,
2010
, “
On the Adequacy of Chemiluminescence as a Measure for Heat Release in Turbulent Flames With Mixture Gradients
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061502
.10.1115/1.4000126
20.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2021
, “
Acoustic-Convective Interference in Transfer Functions of Methane/Hydrogen and Pure Hydrogen Flames
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121017
.10.1115/1.4051960
21.
Joo
,
S.
,
Kwak
,
S.
,
Lee
,
J.
, and
Yoon
,
Y.
,
2021
, “
Thermoacoustic Instability and Flame Transfer Function in a Lean Direct Injection Model Gas Turbine Combustor
,”
Aerosp. Sci. Technol.
,
116
, p.
106872
.10.1016/j.ast.2021.106872
22.
Cuquel
,
A.
,
Durox
,
D.
, and
Schuller
,
T.
,
2013
, “
Scaling the Flame Transfer Function of Confined Premixed Conical Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1007
1014
.10.1016/j.proci.2012.06.056
23.
Schuller
,
T.
,
Marragou
,
S.
,
Oztarlik
,
G.
,
Poinsot
,
T.
, and
Selle
,
L.
,
2022
, “
Influence of Hydrogen Content and Injection Scheme on the Describing Function of Swirled Flames
,”
Combust. Flame
,
240
, p.
111974
.10.1016/j.combustflame.2021.111974
24.
Schimek
,
S.
,
Goke
,
S.
,
Schrodinger
,
C.
, and
Paschereit
,
C.
,
2012
, “
Analysis of Flame Transfer Functions for Blends of CH4 and H2 at Different Humidity Levels
,”
AIAA
Paper No. 2012-0932. 10.2514/6.2012-0932
25.
Bechert
,
W.
,
1980
, “
Sound Absorption Shedding Caused by Vorticity Shedding, Demonstrated With a Jet Flow
,”
J. Sound Vib.
,
70
(
3
), pp.
389
405
.10.1016/0022-460X(80)90307-7
26.
Alamo
,
G. D.
,
Williams
,
F. A.
, and
Sanchez
,
A. L.
,
2004
, “
Hydrogen–Oxygen Induction Times Above Crossover Temperatures
,”
Combust. Sci. Technol.
,
176
(
10
), pp.
1599
1626
.10.1080/00102200490487175
27.
Alemela
,
P. R.
,
Fanaca
,
D.
,
Ettner
,
F.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermans
,
B.
,
2008
, “
Flame Transfer Matrices of a Premixed Flame and a Global Check With Modelling and Experiments
,”
ASME
Paper No. GT2008-50111. 10.1115/GT2008-50111
28.
Polifke
,
W.
,
2020
, “
Modeling and Analysis of Premixed Flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Combust. Sci.
,
79
, p.
100845
.10.1016/j.pecs.2020.100845
29.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
30.
Polifke
,
W.
, and
Lawn
,
C.
,
2007
, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
,
151
(
3
), pp.
437
451
.10.1016/j.combustflame.2007.07.005
You do not currently have access to this content.