Abstract

In the new era of renewable energy, flexible operation of conventional power plants is inevitable, causing high creep-fatigue life consumption. Conventional life assessment methods are deemed to be conservative to address the current requirements. The use of unified constitutive models for the analysis of damage evolution in steam turbine rotors in the past decade has shown promising results and is closely related to experimental data. However, identification of large number of material constants and high computational time hinder the widespread use of such models. In this paper, the latter is addressed using a novel representative input cycle (RIC) concept together with the noniterative asymptotic numerical method (ANM). Various startup shutdown sequences of a typical steam turbine rotor are studied using a unified constitutive model based on Chaboche's kinematic hardening including the damage parameter, Chaboche–Rousselier's isotropic hardening model including the damage parameter, Norton's viscoplastic flow model, Lemaitre's damage potential function and Kachanov–Rabotnov's creep damage law. First, a conventional finite element method (FEM) technique is used and then the proposed RIC method is used to study the evolution of inelastic variables. The reduction in computational time and the compromise in accuracy using the proposed method are studied.

References

1.
Smith
,
O.
,
Cattell
,
O.
,
Farcot
,
E.
,
O'Dea
,
R. D.
, and
Hopcraft
,
K. I.
,
2022
, “
The Effect of Renewable Energy Incorporation on Power Grid Stability and Resilience
,”
Sci. Adv.
,
8
(
9
), p. eabj6734.10.1126/sciadv.abj6734
2.
Schmietendorf
,
K.
,
Peinke
,
J.
, and
Kamps
,
O.
,
2017
, “
The Impact of Turbulent Renewable Energy Production on Power Grid Stability and Quality
,”
Eur. Phys. J. B
,
90
(
11
), p.
222
.10.1140/epjb/e2017-80352-8
3.
González-Aparicio
,
I.
,
Monforti
,
F.
,
Volker
,
P.
,
Zucker
,
A.
,
Careri
,
F.
,
Huld
,
T.
, and
Badger
,
J.
,
2017
, “
Simulating European Wind Power Generation Applying Statistical Downscaling to Reanalysis Data
,”
Appl. Energy
,
199
, pp.
155
168
.10.1016/j.apenergy.2017.04.066
4.
Thevenard
,
D.
, and
Pelland
,
S.
,
2013
, “
Estimating the Uncertainty in Long-Term Photovoltaic Yield Predictions
,”
Sol. Energy
,
91
, pp.
432
445
.10.1016/j.solener.2011.05.006
5.
Gonzalez-Salazar
,
M. A.
,
Kirsten
,
T.
, and
Prchlik
,
L.
,
2018
, “
Review of the Operational Flexibility and Emissions of Gas- and Coal-Fired Power Plants in a Future With Growing Renewables
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1497
1513
.10.1016/j.rser.2017.05.278
6.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1974
, “
A Nonlinear Model of Creep Fatigue Damage Cumulation and Interaction
,”
Proceedings of IUTAM Symposium on Mechanics of Viscoelastic Media and Bodies
,
Gothenburg, Sweden
, Sept.
2
6
.
7.
Manson
,
S. S.
, and
Halford
,
G. R.
,
1967
, “
A Method of Estimating High-Temperature Low-Cycle Fatigue Behavior of Materials
,”
Proceedings of International Conference on High-Strain Fatigue
,
The Metals and Metallurgy Trust
,
London
, UK, June 6–7, pp.
154
170
.
8.
Code Case,
1988
,
Class I Components in Elevated Temperature Service, Section III, Division 1
,
ASME and Pressure Vessel Code, ASME
,
New York
, Standard No. N47-29.
9.
ASME Section III Division 1 – Subsection NH
,
2010
,
Class I Components in Elevated Temperature Service, Section III, Division 1
,
ASME and Pressure Vessel Code, ASME
,
New York
, Standard.
10.
Asayama
,
T.
, and
Tachibana
,
Y.
,
2007
, “
Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR
,” JAEA Task 5 Rev. 3.10.1007/978-3-642-48924-2_28
11.
Pohja
,
R.
,
Holmstrom
,
B.
, and
Lee
,
H.
,
2016
, “
Recommendation for Creep and Creep-Fatigue Assessment for P91 Components
,” Publications Office of the European Union, Luxembourg, Report No.
JRC94508/EUR 27781
.https://publications.jrc.ec.europa.eu/repository/bitstream/JRC94508/jrc94508_matter_4-6_creep-fatigue.pdf
12.
Aktaa
,
J.
,
Walter
,
M.
,
Angella
,
G.
, and
Perelli Cippo
,
E.
,
2019
, “
Creep-Fatigue Design Rules for Cyclic Softening Steels
,”
Int. J. Fatigue
,
118
, pp.
98
103
.10.1016/j.ijfatigue.2018.08.008
13.
R5 Issue 3,
2003
, “
Assessment Procedure for the High Temperature Response of Structures
,” Volume 2/3.
14.
Penny
,
R. K.
, and
Marriott
,
D. L.
,
1995
,
Design for Creep
, 2nd ed.,
Springer
,
Dordrecht, The Netherlands
.
15.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
(
10
), pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
16.
Ringel
,
M.
,
Roos
,
E.
,
Maile
,
K.
, and
Klenk
,
A.
,
2005
, “
Constitutive Equations of Adapted Complexity for High Temperature Loading
,”
ECCC Creep Conference
,
London
, UK, Sept. 12–14, pp.
638
648
.
17.
Wang
,
W. Z.
,
Buhl
,
P.
, and
Klenk
,
A.
,
2015
, “
A Unified Viscoplastic Constitutive Model With Damage for Multiaxial Creep Fatigue Loading
,”
Int. J. Damage Mech.
,
24
(
3
), pp.
363
382
.10.1177/1056789514537007
18.
Wang
,
W.
,
Buhl
,
P.
,
Klenk
,
A.
, and
Liu
,
Y.
,
2016
, “
A Continuum Damage Mechanics-Based Viscoplastic Model of Adapted Complexity for High-Temperature Creep–Fatigue Loading
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
09250
.10.1115/1.4032679
19.
Wang
,
W.
,
Buhl
,
P.
,
Klenk
,
A.
, and
Liu
,
Y.
,
2016
, “
Influence of High-Temperature Dwell Time on Creep-Fatigue Behavior in a 1000 MW Steam Turbine Rotor
,”
Eng. Fract. Mech.
,
166
, pp.
1
22
.10.1016/j.engfracmech.2016.08.018
20.
Wang
,
W. Z.
,
Buhl
,
P.
,
Klenk
,
A.
, and
Liu
,
Y. Z.
,
2016
, “
Study of Creep-Fatigue Behavior in a 1000 MW Rotor Using a Unified Viscoplastic Constitutive Model With Damage
,”
Int. J. Damage Mech.
,
25
(
2
), pp.
178
202
.10.1177/1056789515576766
21.
Liu
,
Y.
, and
Wang
,
W.
,
2020
, “
Evolution of Principal Stress of a Turbine Rotor Under Cyclic Thermo-Mechanical Loading
,”
Eng. Failure Anal.
,
109
, p.
104242
.10.1016/j.engfailanal.2019.104242
22.
Wang
,
W. Z.
, and
Liu
,
Y. Z.
,
2019
, “
Continuum Damage Mechanics-Based Analysis of Creep–Fatigue Interaction Behavior in a Turbine Rotor
,”
Int. J. Damage Mech.
,
28
(
3
), pp.
455
477
.10.1177/1056789518775174
23.
Hong
,
H.
,
Wang
,
W.
, and
Liu
,
Y.
,
2019
, “
High-Temperature Fatigue Behavior of a Steam Turbine Rotor Under Flexible Operating Conditions With Variable Loading Amplitudes
,”
Int. J. Mech. Sci.
,
163
, p.
105121
.10.1016/j.ijmecsci.2019.105121
24.
Cui
,
L.
,
Wang
,
P.
,
Hoche
,
H.
,
Scholz
,
A.
, and
Berger
,
C.
,
2013
, “
The Influence of Temperature Transients on the Lifetime of Modern High-Chromium Rotor Steel Under Service-Type Loading
,”
Mater. Sci. Eng. A
,
560
, pp.
767
780
.10.1016/j.msea.2012.10.032
25.
Wang
,
W. Z.
,
Buhl
,
P.
,
Klenk
,
A.
, and
Liu
,
Y. Z.
,
2016
, “
The Effect of in-Service Steam Temperature Transients on the Damage Behavior of a Steam Turbine Rotor
,”
Int. J. Fatigue
,
87
, pp.
471
483
.10.1016/j.ijfatigue.2016.02.040
26.
Zhao
,
N.
,
Wang
,
W.
,
Jiang
,
J.
, and
Liu
,
Y.
,
2017
, “
Study of Creep-Fatigue Behavior in a 1000 MW Rotor Using a Phenomenological Lifetime Model
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
605
614
.10.1007/s12206-017-0113-5
27.
Benaarbia
,
A.
,
Rae
,
Y.
, and
Sun
,
W.
,
2018
, “
Unified Viscoplasticity Modelling and Its Application to Fatigue-Creep Behaviour of Gas Turbine Rotor
,”
Int. J. Mech. Sci.
,
136
, pp.
36
49
.10.1016/j.ijmecsci.2017.12.008
28.
Wang
,
P.
,
Cui
,
L.
,
Lyschik
,
M.
,
Scholz
,
A.
,
Berger
,
C.
, and
Oechsner
,
M.
,
2012
, “
A Local Extrapolation Based Calculation Reduction Method for the Application of Constitutive Material Models for Creep Fatigue Assessment
,”
Int. J. Fatigue
,
44
, pp.
253
259
.10.1016/j.ijfatigue.2012.04.018
29.
Cui
,
L.
, and
Wang
,
P.
,
2014
, “
Two Lifetime Estimation Models for Steam Turbine Components Under Thermomechanical Creep–Fatigue Loading
,”
Int. J. Fatigue
,
59
, pp.
129
136
.10.1016/j.ijfatigue.2013.09.007
30.
Kontermann
,
C.
,
Scholz
,
A.
, and
Oechsner
,
M.
,
2014
, “
A Method to Reduce Calculation Time for FE Simulations Using Constitutive Material Models
,”
Mater. High Temp.
,
31
(
4
), pp.
334
342
.10.1179/0960340914Z.00000000044
31.
Chaboche
,
J. L.
, and
Cailletaud
,
G.
,
1996
, “
Integration Methods for Complex Plastic Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
133
(
1–2
), pp.
125
155
.10.1016/0045-7825(95)00957-4
32.
Chaboche
,
J. L.
,
Dang-Van
,
K.
, and
Cordier
,
G.
,
1979
, “
Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel
,” International Conference on Structural Mechanics in Reactor Technology (SMiRT - 5),
Berlin, Germany
, Paper No.
L 11/3
.https://repository.lib.ncsu.edu/handle/1840.20/26854
33.
Chaboche
,
J. L.
,
1987a
, “
Cyclic Plasticity Modeling and Ratchetting Effects
,”
Second International Conference on Constitutive Laws for Engineering Materials
,
Desai
, ed.,
Elsevier
,
Tucson, AZ
, Jan.
5
8
.
34.
Chaboche
,
J. L.
, and
Rousselier
,
G.
,
1983
, “
On the Plastic and Viscoplastic Constitutive Equations—Part 1: Rules Developed With Internal Variable Concept
,”
ASME J. Pressure Vessel Technol.
,
105
(
2
), pp. 1
53
158
.10.1115/1.3264257
35.
Norton
,
F. H.
,
1929
,
The Creep of Steel at High Temperatures
,
McGraw-Hill Book Company
,
New York
.
36.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
37.
Kachanov
,
L. M.
,
1967
,
The Theory of Creep
,
National Lending Library for Science and Technology
,
Boston Spa, UK
.
38.
Rabotnov
,
Y. N.
,
1969
,
Creep Problems in Structural Members
,
North Holland
,
Amsterdam, The Netherlands
.
39.
Chaboche
,
J. L.
,
1988
, “
Continuum Damage Mechanics: Part I—General Concepts
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
59
64
.10.1115/1.3173661
40.
Scholz
,
A.
, and
Berger
,
C.
,
2005
, “
Deformation and Life Assessment of High Temperature Materials Under Creep Fatigue Loading
,”
Mat. Wiss. Werkstofftech.
,
36
(
11
), pp.
722
730
.10.1002/mawe.200500941
41.
Linn
,
S.
,
Kontermann
,
C.
, and
Oechsner
,
M.
,
2019
, “
Aspects of Creep Fatigue Lifetime Assessment for High Temperature Components With Accumulative Model
,”
ASME
Paper No. GT2019-90909. 10.1115/GT2019-90909
42.
Huber
,
N.
, and
Tsakmakis
,
C.
,
2001
, “
A Neural Network Tool for Identifying the Material Parameters of a Finite Deformation Viscoplasticity Model With Static Recovery
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
3–5
), pp.
353
384
.10.1016/S0045-7825(01)00278-X
43.
Samir
,
A.
,
Simon
,
A.
,
Scholz
,
A.
, and
Berger
,
C.
,
2006
, “
Service-Type Creep-Fatigue Experiments With Cruciform Specimens and Modelling of Deformation
,”
Int. J. Fatigue
,
28
(
5–6
), pp.
643
651
.10.1016/j.ijfatigue.2005.08.010
44.
Assidi
,
M.
,
Zahrouni
,
H.
,
Damil
,
N.
, and
Potier-Ferry
,
M.
,
2009
, “
Regularization and Perturbation Technique to Solve Plasticity Problems
,”
Int. J. Mater. Forming
,
2
(
1
), pp.
1
14
.10.1007/s12289-008-0389-1
45.
Hamdaoui
,
A.
,
Braikat
,
B.
, and
Damil
,
N.
,
2016
, “
Solving Elastoplasticity Problems by the Asymptotic Numerical Method: Influence of the Parameterizations
,”
Finite Elem. Anal. Des
,
115
, pp.
33
42
.10.1016/j.finel.2016.03.001
46.
Zahrouni
,
H.
,
Aggoune
,
W.
,
Brunelot
,
J.
, and
Potier-Ferry
,
M.
,
2004
, “
Asymptotic Numerical Method for Strong Nonlinearities
,”
Rev. Eur. Élém. Finis
,
13
(
1–2
), pp.
97
118
.10.3166/reef.13.97-118
47.
Cochelin
,
B.
,
1994
, “
A Path Following Technique Via an Asymptotic Numerical Method
,”
Comput. Struct.
,
53
(
5
), pp.
1181
1192
.10.1016/0045-7949(94)90165-1
You do not currently have access to this content.