Abstract

This study is a continuation of previous work aimed at elucidating the effect of hydrogen-cofiring and exhaust gas recirculation (EGR) on combined cycle (CC) performance. The thermodynamic analysis was expanded to include postcombustion capture (PCC) by means of mono-ethanolamine (MEA). Attention was paid to net power output and thermal efficiency. Part-load operation of the CC without carbon capture was taken as a reference. Decarbonization solutions, in ascending order of complexity, included the following: (1) adding a PCC unit; (2) combining EGR with PCC, so as to exploit the increase in the flue gas CO2 concentration while reducing the exhaust gas flow delivered to the absorber; (3) including hydrogen cofiring at the largest capability dictated by the gas turbine (GT) combustion system, with the opportunity to explore a wider range of EGR rates, while still relying on PCC of the residual CO2 in flue gas, before discharge into the environment. Scenarios were first discussed under the same GT load for consistency with the published literature, thus enabling the validation of the modeling procedure. Then, CC net power production was assumed as the basis of comparison. The third solution was found to be the most promising thus minimizing both the energy penalty due to carbon capture and CO2 emission intensity (EI).

References

1.
Samseth
,
E.
,
Stockhausen
,
F.
,
Veillard
,
X.
, and
Weiss
,
A.
,
2021
, “
Five Trends Reshaping European Power Markets
,” McKinsey & Company, accessed Dec. 20, 2022, https://www.mckinsey.com/industries
2.
Bowden
,
J.
,
2018
, “
Evolution of Combined Cycle Performance: From Baseload to Backup
,” General Electric, accessed Dec. 20, 2022, https://www.ge.com/power/transform
3.
Bailera
,
M.
,
Peña
,
B.
,
Lisbona
,
P.
, and
Romeo
,
L. M.
,
2020
, “
Improved Flexibility and Economics of Combined Cycles by Power to Gas
,”
Front. Energy Res.
,
8
(
151
), pp.
1
13
.10.3389/fenrg.2020.00151
4.
de Groot
,
M.
,
Crijns-Graus
,
W.
, and
Harmsen
,
R.
,
2017
, “
The Effects of Variable Renewable Electricity on Energy Efficiency and Full Load Hours of Fossil-Fired Power Plants in the European Union
,”
Energy
,
138
, pp.
575
589
.10.1016/j.energy.2017.07.085
5.
Van den Bergh
,
K.
, and
Delarue
,
E.
,
2015
, “
Cycling of Conventional Power Plants: Technical Limits and Actual Costs
,”
Energy Convers. Manage.
,
97
, pp.
70
77
.10.1016/j.enconman.2015.03.026
6.
Brouwer
,
A. S.
,
van den Broek
,
M.
,
Seebregts
,
A.
, and
Faaij
,
A.
,
2015
, “
Operational Flexibility and Economics of Power Plants in Future Low-Carbon Power Systems
,”
Appl. Energy
,
156
, pp.
107
128
.10.1016/j.apenergy.2015.06.065
7.
Hentschel
,
J.
,
Babić
,
U.
, and
Spliethoff
,
H.
,
2016
, “
A Parametric Approach for the Valuation of Power Plant Flexibility Options
,”
Energy Rep.
,
2
, pp.
40
47
.10.1016/j.egyr.2016.03.002
8.
Catillas
,
J.
, and
Goldmeer
,
J.
,
2021
, “
Decarbonizing Gas Turbines Through Carbon Capture: A Pathway to Lower CO2
,” General Electric, accessed Sept. 11, 2023, www.ge.com/power/future-of-energy
9.
Zhang
,
C.
,
Zhai
,
H.
,
Cao
,
L.
,
Li
,
X.
,
Cheng
,
F.
,
Peng
,
L.
,
Tong
,
K.
,
Meng
,
J.
,
Yang
,
L.
, and
Wang
,
X.
,
2022
, “
Understanding the Complexity of Existing Fossil Fuel Power Plant Decarbonization
,”
Iscience
,
25
(
8
), p.
104758
.10.1016/j.isci.2022.104758
10.
Bhown
,
A.
,
2020
, “
Front-End Engineering Design Study for Retrofit Post-Combustion Carbon Capture on a Natural Gas Combined Cycle Power Plant
,” EPRI, Palo Alto, CA, Report No.
DE-FE0031842
.10.2172/1867616
11.
EPRI
,
2015
, “
A Retrofit Case Study of the Cartagena Natural Gas Combined Cycle (NGCC) Plant With Aker Solutions ACC Carbon Capture Technology
,” EPRI, Palo Alto, CA, accessed Dec. 21, 2022, https://www.epri.com/research/products/000000003002005999
12.
DOE/NETL
,
2022
, “Point Source Carbon Capture Project Map,” U.S. Department of Energy, National Energy Technology Laboratory, Washington, DC, accessed Dec. 22, 2022, https://netl.doe.gov/carbon-management/carbon-capture/ccmap
13.
Gruenewald
,
M.
, and
Radnjanski
,
A.
,
2016
, “
Gas–Liquid Contactors in Liquid Absorbent-Based PCC
,”
Absorption-Based Post-Combustion Capture of Carbon Dioxide
,
Woodhead Publishing
, Sawston, UK, pp.
341
363
.10.1016/B978-0-08-100514-9.00014-7
14.
Shokrollahi
,
F.
,
Lau
,
K. K.
,
Partoon
,
B.
, and
Smith
,
A. M.
,
2022
, “
A Review on the Selection Criteria for Slow and Medium Kinetic Solvents Used in CO2 Absorption for Natural Gas Purification
,”
J. Nat. Gas Sci. Eng.
,
98
, p.
104390
.10.1016/j.jngse.2021.104390
15.
Jordal
,
K.
,
Ystad
,
P. A. M.
,
Anantharaman
,
R.
,
Chikukwa
,
A.
, and
Bolland
,
O.
,
2012
, “
Design-Point and Part-Load Considerations for Natural Gas Combined Cycle Plants With Post Combustion Capture
,”
Int. J. Greenh. Gas Control
,
11
, pp.
271
282
.10.1016/j.ijggc.2012.09.005
16.
Amrollahi
,
Z.
,
Ertesvåg
,
I. S.
, and
Bolland
,
O.
,
2011
, “
Thermodynamic Analysis on Post-Combustion CO2 Capture of Natural-Gas-Fired Power Plant
,”
Int. J. Greenh. Gas Control
,
5
(
3
), pp.
422
426
.10.1016/j.ijggc.2010.09.004
17.
Dutta
,
R.
,
Nord
,
L. O.
, and
Bolland
,
O.
,
2017
, “
Selection and Design of Post-Combustion CO2 Capture Process for 600 MW Natural Gas Fueled Thermal Power Plant Based on Operability
,”
Energy
,
121
, pp.
643
656
.10.1016/j.energy.2017.01.053
18.
Rezazadeh
,
F.
,
Gale
,
W. F.
,
Hughes
,
K. J.
, and
Pourkashanian
,
M.
,
2015
, “
Performance Viability of a Natural Gas Fired Combined Cycle Power Plant Integrated With Post-Combustion CO2 Capture at Part-Load and Temporary Non-Capture Operations
,”
Int. J. Greenh. Gas Control.
,
39
, pp.
397
406
.10.1016/j.ijggc.2015.06.003
19.
Oh
,
S. Y.
, and
Kim
,
J. K.
,
2018
, “
Operational Optimization for Part-Load Performance of Amine-Based Post-Combustion CO2 Capture Processes
,”
Energy
,
146
, pp.
57
66
.10.1016/j.energy.2017.06.179
20.
Verhaeghe
,
A.
,
Dubois
,
L.
,
Bricteux
,
L.
, and
Thomas
,
D.
,
2022
, “
Carbon Capture Performance Assessment Applied to Combined Cycle Gas Turbine Under Part-Load Operation
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041009
.10.1115/1.4055664
21.
M. Montañés
,
R.
,
GarÐarsdóttir
,
S. Ó.
,
Normann
,
F.
,
Johnsson
,
F.
, and
Nord
,
L. O.
,
2017
, “
Demonstrating Load-Change Transient Performance of a Commercial-Scale Natural Gas Combined Cycle Power Plant With Post-Combustion CO2 Capture
,”
Int. J. Greenh. Gas Control
,
63
, pp.
158
174
.10.1016/j.ijggc.2017.05.011
22.
Ceccarelli
,
N.
,
van Leeuwen
,
M.
,
Wolf
,
T.
,
van Leeuwen
,
P.
,
van der Vaart
,
R.
,
Maas
,
W.
, and
Ramos
,
A.
,
2014
, “
Flexibility of Low-CO2 Gas Power Plants: Integration of The CO2 Capture Unit With CCGT Operation
,”
Energy Procedia
,
63
, pp.
1703
1726
.10.1016/j.egypro.2014.11.179
23.
van der Spek
,
M.
,
Bonalumi
,
D.
,
Manzolini
,
G.
,
Ramirez
,
A.
, and
Faaij
,
A.
,
2018
, “
Techno-Economic Comparison of Combined Cycle Gas Turbines With Advanced Membrane Configuration and Monoethanolamine Solvent At Part Load Conditions
,”
Energy Fuels
,
32
(
1
), pp.
625
645
.10.1021/acs.energyfuels.7b02074
24.
Leung
,
D. Y.
,
Caramanna
,
G.
, and
Maroto-Valer
,
M. M.
,
2014
, “
An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
426
443
.10.1016/j.rser.2014.07.093
25.
Li
,
H.
,
Ditaranto
,
M.
, and
Berstad
,
D.
,
2011
, “
Technologies for Increasing CO2 Concentration in Exhaust Gas From Natural Gas-Fired Power Production With Post-Combustion, Amine-Based CO2 Capture
,”
Energy
,
36
(
2
), pp.
1124
1133
.10.1016/j.energy.2010.11.037
26.
Vaccarelli
,
M.
,
Carapellucci
,
R.
, and
Giordano
,
L.
,
2014
, “
Energy and Economic Analysis of the CO2 Capture From Flue Gas of Combined Cycle Power Plants
,”
Energy Procedia
,
45
, pp.
1165
1174
.10.1016/j.egypro.2014.01.122
27.
Elena Diego
,
M.
,
Bellas
,
J. M.
, and
Pourkashanian
,
M.
,
2017
, “
Process Analysis of Selective Exhaust Gas Recirculation for CO2 Capture in Natural Gas Combined Cycle Power Plants Using Amines
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121701
.10.1115/1.4037323
28.
Dillon
,
D.
,
Grace
,
D.
,
Maxson
,
A.
,
Børter
,
K.
,
Augeli
,
J. N.
,
Woodhouse
,
S. N.
, and
Aspelund
,
G.
,
2013
, “
Post-Combustion Capture On Natural Gas Combined Cycle Plants: A Technical And Economical Evaluation of Retrofit, New Build, And The Application Of Exhaust Gas Recycle
,”
Energy Procedia
,
37
, pp.
2397
2405
.10.1016/j.egypro.2013.06.121
29.
Alcaráz-Calderon
,
A. M.
,
González-Díaz
,
M. O.
,
Mendez
,
Á.
,
González-Santaló
,
J. M.
, and
González-Díaz
,
A.
,
2019
, “
Natural Gas Combined Cycle With Exhaust Gas Recirculation and CO2 Capture At Part-Load Operation
,”
J. Energy Inst.
,
92
(
2
), pp.
370
381
.10.1016/j.joei.2017.12.007
30.
Adams
,
T.
, and
Mac Dowell
,
N.
,
2016
, “
Off-Design Point Modelling of A 420 MW CCGT Power Plant Integrated With An Amine-Based Post-Combustion CO2 Capture and Compression Process
,”
Appl. Energy
,
178
, pp.
681
702
.10.1016/j.apenergy.2016.06.087
31.
Vaccarelli
,
M.
,
Sammak
,
M.
,
Jonshagen
,
K.
,
Carapellucci
,
R.
, and
Genrup
,
M.
,
2016
, “
Combined Cycle Power Plants With Post-Combustion CO2 Capture: Energy Analysis at Part Load Conditions for Different HRSG Configurations
,”
Energy
,
112
, pp.
917
925
.10.1016/j.energy.2016.06.115
32.
Jonshagen
,
K.
,
Sipöcz
,
N.
, and
Genrup
,
M.
,
2011
, “
A Novel Approach of Retrofitting A Combined Cycle With Post Combustion CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011703
.10.1115/1.4001988
33.
Petersen
,
N. H.
,
Bexten
,
T.
,
Goßrau
,
C.
, and
Wirsum
,
M.
,
2021
, “
Analysis of The Emission Reduction Potential And Combustion Stability Limits of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation
,”
ASME
Paper No. GT2021-58674. 10.1115/GT2021-58674
34.
Ditaranto
,
M.
,
Li
,
H.
, and
Løvås
,
T.
,
2015
, “
Concept of Hydrogen Fired Gas Turbine Cycle With Exhaust Gas Recirculation: Assessment of Combustion and Emissions Performance
,”
Int. J. Greenh. Gas Control.
,
37
, pp.
377
383
.10.1016/j.ijggc.2015.04.004
35.
Ditaranto
,
M.
,
Heggset
,
T.
, and
Berstad
,
D.
,
2020
, “
Concept of Hydrogen Fired Gas Turbine Cycle With Exhaust Gas Recirculation: Assessment of Process Performance
,”
Energy
,
192
, p.
116646
.10.1016/j.energy.2019.116646
36.
Canepa
,
R.
, and
Wang
,
M.
,
2015
, “
Techno-Economic Analysis of A CO2 Capture Plant Integrated With A Commercial Scale Combined Cycle Gas Turbine (CCGT) Power Plant
,”
Appl. Therm. Eng.
,
74
, pp.
10
19
.10.1016/j.applthermaleng.2014.01.014
37.
ETN Global,
2022
, “
Hydrogen Deployment in Centralised Power Generation A Techno-Economic Case Study
,” ETN a.i.s.b.l., Brussels, Belgium, accessed Feb. 10, 2023, https://etn.global
38.
ElKady
,
A. M.
,
Evulet
,
A.
,
Brand
,
A.
,
Ursin
,
T. P
et al.,
2009
, “
Application Of Exhaust Gas Recirculation In A DLN F-Class Combustion System For Postcombustion Carbon Capture
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
034505
.10.1115/1.2982158
39.
Ravelli
,
S.
,
2022
, “
Thermodynamic Assessment of Exhaust Gas Recirculation in High-Volume Hydrogen Gas Turbines in Combined Cycle Mode
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111012
.10.1115/1.4055353
40.
Thermoflex
, 2022, “Version 30, Thermoflow,” Thermoflow Inc., Jacksonville, FL, accessed Sept. 11, 2023, https://www.thermoflow.com
41.
GEA32930B,
2021
, “
7F Heavy Duty Gas Turbine 60 Hz, 2021, GEA32930B
,” GEA32930B, Boston, MA, accessed Sept. 30, 2022, https://www.ge.com/content/dam/gepower-new/global/en_US/downloads/gas-new-site/products/gas-turbines/7f-fact-sheet-product-specifications.pdf
42.
Serth
,
R. W.
,
2007
, “10 - Reboilers,”
Process Heat Transfer
,
Academic Press
, Cambridge, MA, pp.
443
537
.10.1016/B978-012373588-1/50013-9
43.
Artanto
,
Y.
,
Jansen
,
J.
,
Pearson
,
P.
,
Do
,
T.
,
Cottrell
,
A.
,
Meuleman
,
E.
, and
Feron
,
P.
,
2012
, “
Performance of MEA And Amine-Blends in The CSIRO PCC Pilot Plant at Loy Yang Power in Australia
,”
Fuel
,
101
, pp.
264
275
.10.1016/j.fuel.2012.02.023
44.
Burnes
,
D.
, and
Saxena
,
P.
,
2022
, “
Operational Scenarios of a Gas Turbine Using Exhaust Gas Recirculation for Carbon Capture
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021011
.10.1115/1.4052266
45.
Røkke
,
P.
, and
Hustad
,
J.
,
2005
, “
Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions; Combustion Testing With Focus on Stability and Emissions
,”
Int. J. Thermodyn.
,
8
(
4
), pp.
167
173
.https://dergipark.org.tr/en/download/articlefile/65672
46.
Tanaka
,
Y.
,
Nose
,
M.
,
Nakao
,
M.
,
Saitoh
,
K.
, et al.,
2013
, “
Development of Low Nox Combustion System With EGR for 1700 C-Class Gas Turbine
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
50
(
1
), pp.
1
6
.https://www.mhi.co.jp/technology/review/pdf/e501/e501001.pdf
47.
Bexten
,
T.
,
Jörg
,
S.
,
Petersen
,
N.
,
Wirsum
,
M.
, et al.,
2021
, “
Model-Based Thermodynamic Analysis of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081016
.10.1115/1.4049699
You do not currently have access to this content.