Abstract

Reliable fluid film bearings for high-performance turbomachinery provide significantly extended operating life with controllable stiffness and damping force coefficients at low cost. Hydrostatic thrust bearings support thrust loads and control axial motions. This paper reports measurements and predictions of static and dynamic load characteristics of a hydrostatic thrust bearing fed with pressurized air. The current bearing model uses dynamic axial periodic motion amplitudes, that is, models as a function of the initial film thickness, to predict the dynamic force coefficients. Note that, presently, the recorded frequencies and their amplitudes of pneumatic hammer instability along the axial direction are implemented as an external excitation source. The measured and predicted static stiffnesses increase as the film thickness decrease and supply pressure into the bearing increase. The predicted dynamic force coefficients show a favorable agreement with the test data. Analysis reveals the negative damping coefficients and damping ratios as a distinctive onset condition of the present pneumatic hammer instability of the test bearing. A careful recess design and adequate operation conditions along with an accurate prediction can avoid or prevent undesirable pneumatic hammer instability in hydrostatic thrust bearings. This work extends the knowledge database of hydrostatic thrust bearings with pneumatic hammer instability and provides their design guideline for various operating conditions.

References

1.
Gibson
,
H. G.
,
2019
, “
Design Guide for Bearings Used in Cryogenic Turbopumps and Test Rigs
,” NASA, Huntsville, AL, Technical Report No.
NASA/TP-2019-220549
.https://ntrs.nasa.gov/api/citations/20200000047/downloads/20200000047.pdf
2.
Hassini
,
M. A.
,
Arghir
,
M.
, and
Frocot
,
M.
,
2012
, “
Comparison Between Numerical and Experimental Dynamic Coefficients of a Hybrid Aerostatic Bearing
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122506
.10.1115/1.4007375
3.
Xu
,
J.
,
Li
,
C.
,
Miao
,
X.
,
Zhang
,
C.
, and
Yuan
,
X.
,
2020
, “
An Overview of Bearing Candidates for the Next Generation of Reusable Liquid Rocket Turbopumps
,”
Chin. J. Mech. Eng.
,
33
(
1
), p.
26
.10.1186/s10033-020-00442-6
4.
Huang
,
D. H.
, and
Huzel
,
D. K.
,
1992
,
Modern Engineering for Design of Liquid-Propellant Rocket Engines
,
American Institute of Aeronautics and Astronautics
,
Washington, DC
, pp.
207
212
.
5.
San Andrés
,
L.
,
1990
, “
Turbulent Hybrid Bearings With Fluid Inertia Effects
,”
ASME J. Tribol.
,
112
(
4
), pp.
699
707
.10.1115/1.2920318
6.
San Andrés
,
L. A.
,
1991
, “
Effects of Fluid Compressibility on the Dynamic Response of Hydrostatic Journal Bearings
,”
Wear
,
146
(
2
), pp.
269
283
.10.1016/0043-1648(91)90068-6
7.
Kurtin
,
K. A.
,
Childs
,
D.
,
San Andres
,
L.
, and
Hale
,
K.
,
1993
, “
Experimental Versus Theoretical Characteristics of a High Speed Hybrid (Combination Hydrostatic and Hydrodynamic) Bearing
,”
ASME J. Tribol.
,
115
(
1
), pp.
160
168
.10.1115/1.2920971
8.
Franchek
,
N. M.
,
Childs
,
D. W.
, and
San Andres
,
L.
,
1995
, “
Theoretical and Experimental Comparisons for Rotordynamic Coefficients of a High-Speed, High-Pressure, Orifice-Compensated Hybrid Bearings
,”
ASME J. Tribol.
,
117
(
2
), pp.
285
290
.10.1115/1.2831244
9.
San Andrés
,
L.
,
Yang
,
Z.
, and
Childs
,
D.
,
1995
, “
Turbulent Flow Hydrostatic Bearings: Analysis and Experimental Results
,”
Int. J. Mech. Sci.
,
37
(
8
), pp.
815
829
.10.1016/0020-7403(94)00104-R
10.
Yang
,
Z.
,
San Andrés
,
L.
, and
Childs
,
D.
,
1996
, “
Thermal Effects in Liquid Oxygen Hybrid Bearings
,”
Tribol. Trans.
,
39
(
3
), pp.
654
662
.10.1080/10402009608983579
11.
Rohmer
,
M.
,
San Andrés
,
L.
, and
Wilkinson
,
S.
,
2018
, “
Static Load Performance of a Water-Lubricated Hydrostatic Thrust Bearing
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062401
.10.1115/1.4038472
12.
San Andrés
,
L.
,
Phillips
,
S.
, and
Childs
,
D.
,
2017
, “
A Water-Lubricated Hybrid Thrust Bearing: Measurements and Predictions of Static Load Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022506
.10.1115/1.4034042
13.
Childs
,
D. W.
, and
Esser
,
P.
,
2019
, “
Measurements Versus Predictions for a Hybrid (Hydrostatic Plus Hydrodynamic) Thrust Bearing for a Range of Orifice Diameters
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061015
.10.1115/1.4042721
14.
Wilkinson
,
M. S.
,
2019
, “
Measurements of the Static and Dynamic Load Performance of a Water Lubricated Thrust Bearing
,”
M.S. thesis
,
Mechanical Engineering, Texas A&M University
,
College Station, TX
.https://core.ac.uk/download/pdf/231876311.pdf
15.
Licht
,
L.
,
Fuller
,
D. D.
, and
Sternlicht
,
B.
,
1958
, “
Self-Excited Vibrations of an Air-Lubricated Thrust Bearing
,”
ASME J. Fluids Eng.
,
80
(
2
), pp.
411
414
.10.1115/1.4012384
16.
Stowell
,
T. B.
,
1971
, “
Pneumatic Hammer in a Gas Lubricated Externally Pressurized Annular Thrust Bearing
,”
ASME J. Lubr. Technol.
,
93
(
4
), pp.
498
503
.10.1115/1.3451622
17.
Fourka
,
M.
,
Tian
,
Y.
, and
Bonis
,
M.
,
1996
, “
Prediction of the Stability of Air Thrust Bearings by Numerical, Analytical and Experimental Methods
,”
Wear
,
198
(
1–2
), pp.
1
6
.10.1016/0043-1648(95)06782-5
18.
Arghir
,
M.
,
Hassini
,
M. A.
,
Balducchi
,
F.
, and
Gauthier
,
R.
,
2016
, “
Synthesis of Experimental and Theoretical Analysis of Pneumatic Hammer Instability in an Aerostatic Bearing
,”
ASME J. Eng. Gas Turbines Power
,
33
(
12
), p.
021602
.10.1115/1.4031322
19.
Jung
,
H.
,
Sin
,
S.
,
Heo
,
J.
,
Wee
,
M.
, and
Ryu
,
K.
,
2022
, “
On the Pneumatic Hammer of Hybrid Gas Bearings: Measurements and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121011
.10.1115/1.4055485
20.
San Andrés
,
L.
,
2009
, “
Hydrostatic Bearings,” Modern Lubrication Theory, Notes 12(b)
,
Libraries Texas A&M University Repository, Texas A&M University Library
,
College Station, TX
, accessed Nov. 30, 2022, https://hdl.handle.net/1969.1/93252
21.
Delgado
,
A.
, and
Ertas
,
B.
,
2018
, “
Dynamic Force Coefficients of Hydrostatic Gas Films for Recessed Flat Plates: Experimental Identification and Numerical Predictions
,”
ASME J. Tribol.
,
140
(
6
), p.
061703
.10.1115/1.4040114
22.
San Andrés
,
L.
,
2006
, “
Hybrid Flexure Pivot-Tilting Pad Gas Bearings: Analysis and Experimental Validation
,”
ASME J. Tribol.
,
128
(
3
), pp.
551
558
.10.1115/1.2194918
23.
Miyatake
,
M.
, and
Yoshimoto
,
S.
,
2010
, “
Numerical Investigation of Static and Dynamic Characteristics of Aerostatic Thrust Bearings With Small Feed Holes
,”
Tribol. Int.
,
43
(
8
), pp.
1353
1359
.10.1016/j.triboint.2010.01.002
24.
Charki
,
A.
,
Diop
,
K.
,
Champmartin
,
S.
, and
Ambari
,
A.
,
2013
, “
Numerical Simulation and Experimental Study of Thrust Air Bearings With Multiple Orifices
,”
Int. J. Mech. Sci.
,
72
, pp.
28
38
.10.1016/j.ijmecsci.2013.03.006
25.
San Andrés
,
L.
,
2000
, “
Bulk-Flow Analysis of Hybrid Thrust Bearings for Process Fluid Applications
,”
ASME J. Tribol.
,
122
(
1
), pp.
170
180
.10.1115/1.555340
26.
San Andrés
,
L.
, and
Jeung
,
S. H.
,
2016
, “
Orbit-Model Force Coefficients for Fluid Film Bearings: A Step Beyond Linearization
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022502
.10.1115/1.4031237
27.
San Andrés
,
L.
,
Den
,
S.
, and
Jeung
,
S. H.
,
2016
, “
Transient Response of a Short-Length (L/D = 0.2) Open-Ends Elastically Supported Squeeze Film Damper: Centered and Largely Off-Centered Whirl Motions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
122503
.10.1115/1.4034002
28.
Yi
,
H.
,
Jung
,
H.
,
Kim
,
K.
, and
Ryu
,
K.
,
2022
, “
Static Load Characteristics of Hydrostatic Journal Bearings: Measurements and Predictions
,”
Sensors
,
22
(
19
), p.
7466
.10.3390/s22197466
You do not currently have access to this content.