Abstract

Thermoacoustic combustion instability is a major concern in gas turbine combustors with hydrogen-enriched fuels. Unsteady combustion not only generates acoustic waves but it may also result in fluctuations of burnt gas temperature, referred to as entropy waves. They are convected by the mean flow through the combustor and can cause indirect combustion noise when they are accelerated at the exit. In this work, we demonstrate that entropy waves occur in a fully premixed burner due to unsteady heat transfer at the combustion chamber wall. This mechanism of entropy generation is often neglected in the literature. This work shows an additional mechanism in CH4-H2-air flames, through which entropy may be created even in the fully premixed case. This is due to differential diffusion which generates local fluctuations in equivalence and carbon-to-hydrogen ratios. An adiabatic flame temperature is defined based on these two quantities to examine the influence of differential diffusion on the generation of entropy fluctuations. The generation of entropy waves is investigated by applying system identification (SI) to time series data obtained from a broadband forced large eddy simulation (LES) coupled with a heat conduction solver. The entropy transfer function (ETF) and flame transfer function (FTF) identified with LES/SI are then compared to experimental data obtained with tunable diode laser absorption spectroscopy with wavelength modulation spectroscopy (TDLAS-WMS) for measuring temperature fluctuations, and the multimicrophone method, respectively. After validating the computational setup, the entropy frequency response is identified at various positions within the combustion chamber, and the effects of generation and convective dispersion of entropy waves are qualitatively investigated. We show that a fully premixed turbulent system may exhibit significant entropy waves caused by wall heat losses and differential diffusion of hydrogen.

References

1.
Candel
,
S.
,
Durox
,
D.
,
Ducruix
,
S.
,
Birbaud
,
A.-L.
,
Noiray
,
N.
, and
Schuller
,
T.
,
2009
, “
Flame Dynamics and Combustion Noise: Progress and Challenges
,”
Int. J. Aeroacoustics
,
8
(
1
), pp.
1
56
.10.1260/147547209786234984
2.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
3.
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Effect of Hydrogen Enrichment on the Dynamics of a Lean Technically Premixed Elevated Pressure Flame
,”
Combust. Flame
,
225
, pp.
149
159
.10.1016/j.combustflame.2020.10.033
4.
Zhu
,
M.
,
Dowling
,
A. P.
, and
Bray
,
K. N. C.
,
2000
, “
Self-Excited Oscillations in Combustors With Spray Atomisers
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
779
786
.10.1115/1.1376717
5.
Eckstein
,
J.
,
Freitag
,
E.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Experimental Study on the Role of Entropy Waves in Low-Frequency Oscillations in a RQL Combustor
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
264
270
.10.1115/1.2132379
6.
Ihme
,
M.
,
2017
, “
Combustion and Engine-Core Noise
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
277
310
.10.1146/annurev-fluid-122414-034542
7.
Marble
,
F. E.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
8.
De Domenico
,
F.
,
Rolland
,
E. O.
,
Rodrigues
,
J.
,
Magri
,
L.
, and
Hochgreb
,
S.
,
2021
, “
Compositional and Entropy Indirect Noise Generated in Subsonic Non-Isentropic Nozzles
,”
J. Fluid Mech.
,
910
, p.
A5
.https://www.cambridge.org/core/journals/journal-offluid-mechanics/article/compositional-and-entropy-indirect-noise-generated-in-subsonicnonisentropic-nozzles/2FF71DCDD11B49A204061BD3DEC0F5C5
9.
Weilenmann
,
M.
, and
Noiray
,
N.
,
2020
, “
Experiments on Sound Reflection and Production by Choked Nozzle Flows Subject to Acoustic and Entropy Waves
,”
J. Sound Vib.
, 492, p.
115799
.10.1016/j.jsv.2020.115799
10.
Leyko
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2009
, “
Comparison of Direct and Indirect Combustion Noise Mechanisms in a Model Combustor
,”
AIAA J.
,
47
(
11
), pp.
2709
2716
.10.2514/1.43729
11.
Hield
,
P. A.
,
Brear
,
M. J.
, and
Jin
,
S. H.
,
2009
, “
Thermoacoustic Limit Cycles in a Premixed Laboratory Combustor With Open and Choked Exits
,”
Combust. Flame
,
156
(
9
), pp.
1683
1697
.10.1016/j.combustflame.2009.05.011
12.
Goh
,
C. S.
, and
Morgans
,
A. S.
,
2013
, “
The Influence of Entropy Waves on the Thermoacoustic Stability of a Model Combustor
,”
Combust. Sci. Technol.
,
185
(
2
), pp.
249
268
.10.1080/00102202.2012.715828
13.
Chen
,
L. S.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2016
, “
Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front
,”
Combust. Flame
,
166
, pp.
170
180
.10.1016/j.combustflame.2016.01.015
14.
Chen
,
L. S.
,
Steinbacher
,
T.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2016
, “
On Generation of Entropy Waves Across a Premixed Flame
,”
ASME
Paper No. GT2016-57026.10.1115/GT2016-57026
15.
Chen
,
L. S.
,
2016
, “
Scattering and Generation of Acoustic and Entropy Waves Across Moving and Fixed Heat Sources
,”
Ph.D. thesis
,
TU Munich
, Munich, Germany.https://mediatum.ub.tum.de/doc/1326486/1326486.pdf
16.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillation
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
17.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
18.
Polifke
,
W.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor With a Choked Exit
,”
Int. J. Acoust. Vib.
,
6
(
3
), pp.
135
146
.10.20855/IJAV.2001.6.382
19.
Sattelmayer
,
T.
,
2003
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
.10.1115/1.1365159
20.
Motheau
,
E.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
Mixed Acoustic-Entropy Combustion Instabilities in Gas Turbines
,”
J. Fluid Mech.
,
749
, pp.
542
576
.10.1017/jfm.2014.245
21.
Steinbacher
,
T.
,
Meindl
,
M.
, and
Polifke
,
W.
,
2018
, “
Modeling the Generation of Temperature Inhomogeneities by a Premixed Flame
,”
Int. J. Spray Combust. Dyn.
,
10
(
2
), pp.
111
130
.10.1177/1756827717738139
22.
Brookes
,
S. J.
,
Cant
,
R. S.
,
Dupere
,
I. D. J.
, and
Dowling
,
A. P.
,
2001
, “
Computational Modelling of Self-Excited Combustion Instabilities
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
322
326
.10.1115/1.1362662
23.
Christodoulou
,
L.
,
Karimi
,
N.
,
Cammarano
,
A.
,
Paul
,
M.
, and
Navarro-Martinez
,
S.
,
2020
, “
State Prediction of an Entropy Wave Advecting Through a Turbulent Channel Flow
,”
J. Fluid Mech.
,
882
, p.
A8
.10.1017/jfm.2019.799
24.
Rodrigues
,
J.
,
Busseti
,
A.
, and
Hochgreb
,
S.
,
2020
, “
Numerical Investigation on the Generation, Mixing and Convection of Entropic and Compositional Waves in a Flow Duct
,”
J. Sound Vib.
,
472
, p.
115155
.10.1016/j.jsv.2019.115155
25.
Xia
,
Y.
,
Duran
,
I.
,
Morgans
,
A. S.
, and
Han
,
X.
,
2018
, “
Dispersion of Entropy Perturbations Transporting Through an Industrial Gas Turbine Combustor
,”
Flow, Turbul. Combust.
,
100
(
2
), pp.
481
502
.10.1007/s10494-017-9854-6
26.
Morgans
,
A. S.
,
Goh
,
C. S.
, and
Dahan
,
J. A.
,
2013
, “
The Dissipation and Shear Dispersion of Entropy Waves in Combustor Thermoacoustics
,”
J. Fluid Mech.
,
733
, p.
R2
.10.1017/jfm.2013.448
27.
Weilenmann
,
M.
,
Xiong
,
Y.
, and
Noiray
,
N.
,
2020
, “
On the Dispersion of Entropy Waves in Turbulent Flows
,”
J. Fluid Mech.
,
903
, p.
R1
.10.1017/jfm.2020.703
28.
Bake
,
F.
,
Richter
,
C.
,
Mühlbauer
,
B.
,
Kings
,
N.
,
Röhle
,
I.
,
Thiele
,
F.
, and
Noll
,
B.
,
2009
, “
The Entropy Wave Generator (EWG): A Reference Case on Entropy Noise
,”
J. Sound Vib.
,
326
(
3–5
), pp.
574
598
.10.1016/j.jsv.2009.05.018
29.
Wassmer
,
D.
,
Schuermans
,
B.
,
Paschereit
,
C. O.
, and
Moeck
,
J. P.
,
2017
, “
Measurement and Modeling of the Generation and the Transport of Entropy Waves in a Model Gas Turbine Combustor
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
299
309
.10.1177/1756827717696326
30.
Giusti
,
A.
,
Worth
,
N. A.
,
Mastorakos
,
E.
, and
Dowling
,
A. P.
,
2017
, “
Experimental and Numerical Investigation Into the Propagation of Entropy Waves
,”
AIAA J.
,
55
(
2
), pp.
446
458
.10.2514/1.J055199
31.
Weilenmann
,
M.
,
Doll
,
U.
,
Bombach
,
R.
,
Blondé
,
A.
,
Ebi
,
D.
,
Xiong
,
Y.
, and
Noiray
,
N.
,
2021
, “
Linear and Nonlinear Entropy-Wave Response of Technically-Premixed Jet-Flames-Array and Swirled Flame to Acoustic Forcing
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6135
6143
.10.1016/j.proci.2020.06.233
32.
Polifke
,
W.
,
2020
, “
Modeling and Analysis of Premixed Flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Combust. Sci.
,
79
, p.
100845
.10.1016/j.pecs.2020.100845
33.
Dharmaputra
,
B.
,
Shcherbanev
,
S.
,
Blondé
,
A.
,
Schuermans
,
B.
, and
Noiray
,
N.
,
2022
, “
Entropy Transfer Function Measurement With Tunable Diode Laser Absorption Spectroscopy
,”
Proc. Combust. Inst.
, 39(4), pp.
4621
4630
.10.1016/j.proci.2022.07.083
34.
Magri
,
L.
,
O'Brien
,
J.
, and
Ihme
,
M.
,
2016
, “
Compositional Inhomogeneities as a Source of Indirect Combustion Noise
,”
J. Fluid Mech.
,
799
, p.
R4
.10.1017/jfm.2016.397
35.
Cumpsty
,
N. A.
, and
Marble
,
F. E.
,
1977
, “
The Interaction of Entropy Fluctuations With Turbine Blade Rows; A Mechanism of Turbojet Engine Noise
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
357
(
1690
), pp.
323
344
.10.1098/rspa.1977.0171
36.
Morgans
,
A. S.
, and
Duran
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.10.1177/1756827716651791
37.
Meindl
,
M.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2021
, “
On the Spurious Entropy Generation Encountered in Hybrid Linear Thermoacoustic Models
,”
Combust. Flame
,
223
, pp.
525
540
.10.1016/j.combustflame.2020.09.018
38.
Kraus
,
C.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2018
, “
Coupling Heat Transfer and Large Eddy Simulation for Combustion Instability Prediction in a Swirl Burner
,”
Combust. Flame
,
191
, pp.
239
251
.10.1016/j.combustflame.2018.01.007
39.
Cazéres
,
Q.
,
2021
, “
Analysis and Reduction of Chemical Kinetics for Combustion Applications
,”
Ph.D. thesis
,
L'Institut National Polytechnique de Toulouse
,
Toulouse, France
.https://oatao.univ-toulouse.fr/28503/
40.
Bilger
,
R. W.
,
Stårner
,
S. H.
, and
Kee
,
R. J.
,
1990
, “
On Reduced Mechanisms for Methane-Air Combustion in Nonpremixed Flames
,”
Combust. Flame
,
80
(
2
), pp.
135
149
.10.1016/0010-2180(90)90122-8
41.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831.10.1115/GT2004-53831
42.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
43.
Kuhlmann
,
J.
,
Lampmann
,
A.
,
Pfitzner
,
M.
, and
Polifke
,
W.
,
2022
, “
Assessing Accuracy, Reliability and Efficiency of Combustion Models for Prediction of Flame Dynamics With Large Eddy Simulation
,”
Phys. Fluids
,
34
(
9
), p.
095117
.10.1063/5.0098975
44.
Eder
,
A. J.
,
Silva
,
C. F.
,
Haeringer
,
M.
,
Kuhlmann
,
J.
, and
Polifke
,
W.
,
2023
, “
Incompressible versus Compressible Large Eddy Simulation for the Identification of Premixed Flame Dynamics
,”
Int. J. Spray Combust. Dyn.
,
15
(
1
), pp.
16
32
.10.1177/17568277231154204
45.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
46.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
47.
Légier
,
J.-P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the Summer Program 2000
, Stanford, CA, pp.
157
168
.https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf
48.
Oberleithner
,
K.
, and
Albayrak
,
A.
,
2018
, “Vorhersage von Flammentransferfunktionen: Abschätzung der Flammentransferfunktion aus stationären Strömungsfeldern,”
FVV/Informationstagung Turbomaschinen, Bad Neuenahr
, Germany, Abschlussbericht 1151.
49.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part i: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
50.
Agostinelli
,
P. W.
,
2022
, “
Assessment of Large Eddy Simulation in the Conjugate Heat Transfer Context for Engine Operability: Application to Hydrogen Enrichment and Spinning Combustion Technology
,”
Ph.D. thesis
,
Toulouse INP
,
Toulouse, France
.https://hal.science/tel-04192817v1
51.
Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego
,
2016
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” University of California at San Diego, La Jolla, CA.https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
52.
Garcia
,
A. M.
,
Le Bras
,
S.
,
Prager
,
J.
,
Haeringer
,
M.
, and
Polifke
,
W.
,
2022
, “
Large Eddy Simulation of the Dynamics of Lean Premixed Flames Using Global Reaction Mechanisms Calibrated for CH4-H2 Fuel Blends
,”
Phys. Fluids
,
34
(
9
), p.
095105
.10.1063/5.0098898
53.
Hirschfelder
,
J. O.
,
Bird
,
R. B.
, and
Cutriss
,
C. F.
,
1966
,
Molecular Theory of Gases and Liquids
,
Wiley
, New York.
54.
Konle
,
M.
,
de Guillebon
,
L.
, and
Cottier
,
F.
,
2014
, “
Multi-Physics Simulations of an Aero Engine Combustor With OpenFOAM
,”
Proceedings of the 1st Global Power and Propulsion Forum
, Zurich, Switzerland, Paper No. GPPF-2017-0045.
55.
Agostinelli
,
P. W.
,
Laera
,
D.
,
Boxx
,
I.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2021
, “
Impact of Wall Heat Transfer in Large Eddy Simulation of Flame Dynamics in a Swirled Combustion Chamber
,”
Combust. Flame
,
234
, p.
111728
.10.1016/j.combustflame.2021.111728
56.
Polifke
,
W.
,
2014
, “
Black-Box System Identification for Reduced Order Model Construction
,”
Ann. Nucl. Energy
,
67
, pp.
109
128
.10.1016/j.anucene.2013.10.037
57.
Föller
,
S.
, and
Polifke
,
W.
,
2011
, “
Advances in Identification Techniques for Aero-Acoustic Scattering Coefficients From Large Eddy Simulation
,” Proceedings of the 18th International Congress on Sound and Vibration
(ICSV18)
, Rio de Janeiro, Brazil, July 10–14, pp.
3122
3129
.https://www.researchgate.net/publication/255738384_Advances_in_Identification_Techniques_for_Aero-Acoustic_Scattering_Coefficients_from_Large_Eddy_Simulation
58.
Higgins
,
B. S.
,
McQuay
,
M. Q.
,
Lacas
,
F.
,
Rolon
,
J. C.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2001
, “
Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed, Laminar Flames
,”
Fuel
,
80
(
1
), pp.
67
74
.10.1016/S0016-2361(00)00069-7
59.
Schuermans
,
B.
,
Guethe
,
F.
, and
Mohr
,
W.
,
2010
, “
Optical Transfer Function Measurements for Technically Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
081501
.10.1115/1.3124663
60.
Bilger
,
R. W.
, and
Dibble
,
R. W.
,
1982
, “
Differential Molecular Diffusion Effects in Turbulent Mixing
,”
Combust. Sci. Technol.
,
28
(
3–4
), pp.
161
172
.10.1080/00102208208952552
61.
Wang
,
J.
,
Huang
,
Z.
,
Tang
,
C.
,
Miao
,
H.
, and
Wang
,
X.
,
2009
, “
Numerical Study of the Effect of Hydrogen Addition on Methane-Air Mixtures Combustion
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1084
1096
.10.1016/j.ijhydene.2008.11.010
62.
Huet
,
M.
, and
Giauque
,
A.
,
2013
, “
A Nonlinear Model for Indirect Combustion Noise Through a Compact Nozzle
,”
J. Fluid Mech.
,
733
, pp.
268
301
.10.1017/jfm.2013.442
63.
Sovardi
,
C.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Concurrent Identification of Aero-Acoustic Scattering and Noise Sources at a Flow Duct Singularity in Low Mach Number Flow
,”
J. Sound Vib.
,
377
, pp.
90
105
.10.1016/j.jsv.2016.05.025
64.
Polifke
,
W.
, and
Lawn
,
C. J.
,
2007
, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
,
151
(
3
), pp.
437
451
.10.1016/j.combustflame.2007.07.005
You do not currently have access to this content.