Abstract

Spray auto-ignition is a complex physical and chemical process whose mechanism is still not well understood. This paper explores the contribution of physical and chemical mechanisms to spray auto-ignition and combustion behaviors over a wide range of ambient temperature and pressure conditions in an optical rapid compression machine. Specifically, the spray development and ignition process are first visualized and the spray ignition delay times (IDTI) are measured through high-speed imaging. IDTI is then compared with gas phase chemical ignition delay times (IDTC) calculated by 0D homogeneous reactor simulation. Subsequently, different combustion modes are recognized by analyzing the mixture status at the instant of ignition, the spray flame behavior, and the pressure evolution history. Finally, a regime diagram of combustion modes is proposed to illustrate the dominant mechanisms for different spray combustion modes. Results show that the measured spray IDTI is longer than the 0D calculated IDTC due to the physical delay caused by spray development, evaporation, and mixing. At higher temperatures and pressures, the difference between IDTI and IDTC is increased because the evaporation and mixing become progressively important, compared to the chemical reaction mechanism. Scrutinization on the pressure and the apparent heat release rate evolution curve reveals that with the increase of the temperature and pressure, the chemical-controlled combustion time accounts for less and less of the total combustion duration. This further indicates that spray ignition and combustion behaviors transit from chemical-dominated mode to mixing-dominated mode.

References

1.
Dec
,
J. E.
,
2009
, “
Advanced Compression-Ignition Engines-Understanding the In-Cylinder Processes
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2727
2742
.10.1016/j.proci.2008.08.008
2.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
3.
Dec
,
J. E.
,
1997
, “
A Conceptual Model of DL Diesel Combustion Based on Laser-Sheet Imaging
,”
SAE
Paper No. 970875.10.4271/970873
4.
Jacobs
,
T. J.
, and
Assanis
,
D. N.
,
2007
, “
The Attainment of Premixed Compression Ignition Low-Temperature Combustion in a Compression Ignition Direct Injection Engine
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2913
2920
.10.1016/j.proci.2006.08.113
5.
Han
,
D.
,
Ickes
,
A. M.
,
Assanis
,
D. N.
,
Huang
,
Z.
, and
Bohac
,
S. V.
,
2010
, “
Attainment and Load Extension of High-Efficiency Premixed Low-Temperature Combustion With Dieseline in a Compression Ignition Engine
,”
Energy Fuels
,
24
(
6
), pp.
3517
3525
.10.1021/ef100269c
6.
Musculus
,
M. P. B.
,
Miles
,
P. C.
, and
Pickett
,
L. M.
,
2013
, “
Conceptual Models for Partially Premixed Low-Temperature Diesel Combustion
,”
Prog. Energy Combust. Sci.
,
39
(
2–3
), pp.
246
283
.10.1016/j.pecs.2012.09.001
7.
Donkerbroek
,
A. J.
,
Boot
,
M. D.
,
Luijten
,
C. C. M.
,
Dam
,
N. J.
, and
ter Meulen
,
J. J.
,
2011
, “
Flame Lift-Off Length and Soot Production of Oxygenated Fuels in Relation With Ignition Delay in a DI Heavy-Duty Diesel Engine
,”
Combust. Flame
,
158
(
3
), pp.
525
538
.10.1016/j.combustflame.2010.10.003
8.
Malbec
,
L.-M.
,
Eagle
,
W. E.
,
Musculus
,
M. P.
, and
Schihl
,
P.
,
2015
, “
Influence of Injection Duration and Ambient Temperature on the Ignition Delay in a 2.34 L Optical Diesel Engine
,”
SAE Int. J. Engines
,
9
(
1
), pp.
47
70
.10.4271/2015-01-1830
9.
Pickett
,
L. M.
,
Siebers
,
D. L.
, and
Idicheria
,
C. A.
,
2005
, “
Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets
,”
SAE
Paper No. 2005-10-24.10.4271/2005-01-3843
10.
Rabl
,
S.
,
Davies
,
T. J.
,
McDougall
,
A. P.
, and
Cracknell
,
R. F.
,
2015
, “
Understanding the Relationship Between Ignition Delay and Burn Duration in a Constant Volume Vessel at Diesel Engine Conditions
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
2967
2974
.10.1016/j.proci.2014.05.054
11.
Chen
,
B.
,
Feng
,
L.
,
Wang
,
Y.
,
Ma
,
T.
,
Liu
,
H.
,
Geng
,
C.
, and
Yao
,
M.
,
2019
, “
Spray and Flame Characteristics of Wall-Impinging Diesel Fuel Spray at Different Wall Temperatures and Ambient Pressures in a Constant Volume Combustion Vessel
,”
Fuel
,
235
, pp.
416
425
.10.1016/j.fuel.2018.07.154
12.
Haylett
,
D. R.
,
Lappas
,
P. P.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2009
, “
Application of an Aerosol Shock Tube to the Measurement of Diesel Ignition Delay Times
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
477
484
.10.1016/j.proci.2008.06.134
13.
Miyasaka
,
K.
, and
Mizutani
,
Y.
,
1977
, “
Ignition Delays of Spray Columns Behind a Reflected Shock
,”
Symp. Int. Combust.
,
16
(
1
), pp.
639
645
.10.1016/S0082-0784(77)80359-7
14.
Miwa
,
K.
,
Ohmija
,
T.
, and
Nishitani
,
T.
,
1988
, “
A Study of the Ignition Delay of Diesel Fuel Spray Using a Rapid Compression Machine
,”
JSME Int. J.
,
31
(
1
), pp.
166
173
.10.1299/jsmeb1988.31.1_16
15.
Khalid
,
A.
,
Hayashi
,
K.
,
Kidoguchi
,
Y.
, and
Yatsufusa
,
T.
,
2011
, “
Effect of Air Entrainment and Oxygen Concentration on Endothermic and Heat Recovery Process of Diesel Ignition
,”
SAE
Paper No. 2011-01-1834.10.4271/2011-01-1834
16.
Rothamer
,
D. A.
, and
Murphy
,
L.
,
2013
, “
Systematic Study of Ignition Delay for Jet Fuels and Diesel Fuel in a Heavy-Duty Diesel Engine
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3021
3029
.10.1016/j.proci.2012.06.085
17.
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N.
, and
Sattler
,
E.
,
2013
, “
Investigation of Physical and Chemical Delay Periods of Different Fuels in the Ignition Quality Tester
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061501
.10.1115/1.4023607
18.
Caton
,
P. A.
,
Hamilton
,
L. J.
, and
Cowart
,
J. S.
,
2011
, “
Understanding Ignition Delay Effects With Pure Component Fuels in a Single-Cylinder Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
032803
.10.1115/1.4001943
19.
Liu
,
H.
,
Huo
,
M.
,
Liu
,
Y.
,
Wang
,
X.
,
Wang
,
H.
,
Yao
,
M.
, and
Lee
,
C-F F.
,
2014
, “
Time-Resolved Spray, Flame, Soot Quantitative Measurement Fueling n-Butanol and Soybean Biodiesel in a Constant Volume Chamber Under Various Ambient Temperatures
,”
Fuel
,
133
, pp.
317
325
.10.1016/j.fuel.2014.05.038
20.
Mayo
,
M. P.
, and
Boehman
,
A. L.
,
2015
, “
Ignition Behavior of Biodiesel and Diesel Under Reduced Oxygen Atmospheres
,”
Energy Fuels
,
29
(
10
), pp.
6793
6803
.10.1021/acs.energyfuels.5b01439
21.
Pham
,
P. X.
,
Pham
,
N. V. T.
,
Pham
,
T. V.
,
Nguyen
,
V. H.
, and
Nguyen
,
K. T.
,
2021
, “
Ignition Delays of Biodiesel-Diesel Blends: Investigations Into the Role of Physical and Chemical Processes
,”
Fuel
,
303
, p.
121251
.10.1016/j.fuel.2021.121251
22.
Sung
,
C. J.
, and
Curran
,
H. J.
,
2014
, “
Using Rapid Compression Machines for Chemical Kinetics Studies
,”
Prog. Energy Combust. Sci.
,
44
, pp.
1
18
.10.1016/j.pecs.2014.04.001
23.
Goldsborough
,
S. S.
,
Hochgreb
,
S.
,
Vanhove
,
G.
,
Wooldridge
,
M. S.
,
Curran
,
H. J.
, and
Sung
,
C.-J.
,
2017
, “
Advances in Rapid Compression Machine Studies of Low- and Intermediate-Temperature Autoignition Phenomena
,”
Prog. Energy Combust. Sci.
,
63
, pp.
1
78
.10.1016/j.pecs.2017.05.002
24.
Wu
,
Y. T.
,
Yang
,
M.
,
Tang
,
C. L.
,
Liu
,
Y.
,
Zhang
,
P.
, and
Huang
,
Z. H.
,
2019
, “
Promoting “Adiabatic Core” Approximation in a Rapid Compression Machine by an Optimized Creviced Piston Design
,”
Fuel
,
251
, pp.
328
340
.10.1016/j.fuel.2019.04.030
25.
Liu
,
Y.
,
Tang
,
C. L.
,
Zhan
,
C.
,
Wu
,
Y. T.
,
Yang
,
M.
, and
Huang
,
Z. H.
,
2019
, “
Low Temperature Auto-Ignition Characteristics of Methylcyclohexane/Ethanol Blend Fuels: Ignition Delay Time Measurement and Kinetic Analysis
,”
Energy
,
177
, pp.
465
475
.10.1016/j.energy.2019.04.132
26.
Yang
,
M.
,
Wu
,
Y. T.
,
Tang
,
C. L.
,
Liu
,
Y.
, and
Huang
,
Z. H.
,
2019
, “
Auto-Ignition Behaviors of Nitromethane in Diluted Oxygen in a Rapid Compression Machine: Critical Conditions for Ignition, Ignition Delay Times Measurements, and Kinetic Modeling Interpretation
,”
J. Hazard. Mater.
,
377
, pp.
52
61
.10.1016/j.jhazmat.2019.05.036
27.
Lee
,
D.
, and
Hochgreb
,
S.
,
1998
, “
Rapid Compression Machines: Heat Transfer and Suppression of Corner Vortex
,”
Combust. Flame
,
114
(
3–4
), pp.
531
545
.10.1016/S0010-2180(97)00327-1
28.
Xu
,
N.
,
Wu
,
Y. T.
,
Tang
,
C. L.
,
Zhang
,
P.
,
He
,
X.
,
Wang
,
Z.
, and
Huang
,
Z. H.
,
2016
, “
Experimental Study of 2,5-Dimethylfuran and 2-Methylfuran in a Rapid Compression Machine: Comparison of the Ignition Delay Times and Reactivity at Low to Intermediate Temperature
,”
Combust. Flame
,
168
, pp.
216
227
.10.1016/j.combustflame.2016.03.016
29.
Wu
,
Y.
,
Liu
,
Y.
,
Tang
,
C.
, and
Huang
,
Z.
,
2018
, “
Ignition Delay Times Measurement and Kinetic Modeling Studies of 1-Heptene, 2-Heptene and n-Heptane at Low to Intermediate Temperatures by Using a Rapid Compression Machine
,”
Combust. Flame
,
197
, pp.
30
40
.10.1016/j.combustflame.2018.07.007
30.
Weber
,
B. W.
,
Sung
,
C.-J.
, and
Renfro
,
M. W.
,
2015
, “
On the Uncertainty of Temperature Estimation in a Rapid Compression Machine
,”
Combust. Flame
,
162
(
6
), pp.
2518
2528
.10.1016/j.combustflame.2015.03.001
31.
Brunt
,
M. F.
,
Rai
,
H.
, and
Emtage
,
A. L.
,
1998
, “
The Calculation of Heat Release Energy From Engine Cylinder Pressure Data
,”
SAE
Paper No. 981052.10.4271/981052
32.
Gatowski
,
J.
,
Balles
,
E. N.
,
Chun
,
K. M.
,
Nelson
,
F.
,
Ekchian
,
J.
, and
Heywood
,
J. B.
,
1984
, “
Heat Release Analysis of Engine Pressure Data
,”
SAE
Paper No. 841359.10.4271/841359
33.
Ghandhi
,
J. B.
,
2014
, “
Pressure and Heat Release Analysis
,”
Encyclopedia of Automotive Engineering
,
H. K.
Siebers D.
,
Chan
C. C.
, eds.,
Wiley
, Hoboken, NJ, pp.
1
13
.
34.
Goldsborough
,
S. S.
,
Santner
,
J.
,
Kang
,
D.
,
Fridlyand
,
A.
,
Rockstroh
,
T.
, and
Jespersen
,
M. C.
,
2019
, “
Heat Release Analysis for Rapid Compression Machines: Challenges and Opportunities
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
603
611
.10.1016/j.proci.2018.05.128
35.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass‐Derived Transportation Fuels
,”
Int. J. Chem. Kinet.
,
46
(
9
), pp.
512
542
.10.1002/kin.20867
36.
Yu
,
L.
,
Wang
,
S.
,
Wang
,
W.
,
Qiu
,
Y.
,
Qian
,
Y.
,
Mao
,
Y.
, and
Lu
,
X.
,
2019
, “
Exploration of Chemical Composition Effects on the Autoignition of Two Commercial Diesels: Rapid Compression Machine Experiments and Model Simulation
,”
Combust. Flame
,
204
, pp.
204
219
.10.1016/j.combustflame.2019.03.007
37.
Srna
,
A.
,
von Rotz
,
B.
,
Herrmann
,
K.
,
Boulouchos
,
K.
, and
Bruneaux
,
G.
,
2019
, “
Experimental Investigation of Pilot-Fuel Combustion in Dual-Fuel Engines, Part 1: Thermodynamic Analysis of Combustion Phenomena
,”
Fuel
,
255
, p.
115642
.10.1016/j.fuel.2019.115642
38.
Pickett
,
L. M.
, and
Hoogterp
,
L.
,
2008
, “
Fundamental Spray and Combustion Measurements of JP-8 at Diesel Conditions
,”
SAE Int. J. Commer. Veh.
,
1
(
1
), pp.
108
118
.10.4271/2008-01-1083
You do not currently have access to this content.