Abstract

This work proposes a model for predicting conversion efficiency in multifunctional catalysts with dual-layer washcoat. The mass transfer is more relevant in these devices than in single-layer washcoats due to additional transport steps between the catalytic layers. In addition, the different reaction mechanisms between layers make the concentration of the chemical species differ in each layer. To deal with this boundary while considering the need for real-time computation, a reduced-order explicit solver for the convective diffusive reactive transport is presented for the case of dual-layer washcoats. Assuming one-dimensional quasi-steady flow, the solution procedure consisted of substituting the diffusive interfacial fluxes in the bulk gas and washcoat conservation equations by expressions that depend explicitly on the average concentration in the gas phase. The solution was then applied to model the performance of dual-layer oxidation catalysts with reductant accumulation in one washcoat layer, such as diesel oxidation catalyst (DOC) and ammonia slip catalyst (ASC) systems, during driving cycles. First, the response of these catalysts was analyzed by comparing them against experimental data and considering additional parameters provided by the model. Next, the importance of the mass transfer limitations was discussed to complete the analysis. The proposed model was compared with a simplified solver where the mass transfer steps were omitted, thus deteriorating the prediction capabilities in some driving cycle phases. Finally, a sensitivity study was performed to assess the impact of the mesh size on the prediction capabilities and computational requirements.

References

1.
Giechaskiel
,
B.
,
Valverde
,
V.
,
Kontses
,
A.
,
Suarez-Bertoa
,
R.
,
Selleri
,
T.
,
Melas
,
A.
,
Otura
,
M.
,
Ferrarese
,
C.
,
Martini
,
G.
,
Balazs
,
A.
,
Andersson
,
J.
,
Samaras
,
Z.
, and
Dilara
,
P.
,
2021
, “
Effect of Extreme Temperatures and Driving Conditions on Gaseous Pollutants of a Euro 6d-Temp Gasoline Vehicle
,”
Atmosphere
,
12
(
8
), p.
1011
.10.3390/atmos12081011
2.
Zhang
,
C.
,
Chen
,
L.
,
Ding
,
S.
,
Zhou
,
X.
,
Chen
,
R.
,
Zhang
,
X.
,
Yu
,
Z.
, and
Wang
,
J.
,
2022
, “
Mitigation Effects of Alternative Aviation Fuels on Non-Volatile Particulate Matter Emissions From Aircraft Gas Turbine Engines: A Review
,”
Sci. Total Environ.
,
820
, p.
153233
.10.1016/j.scitotenv.2022.153233
3.
Ni
,
P.
,
Wang
,
X.
, and
Li
,
H.
,
2020
, “
A Review on Regulations, Current Status, Effects and Reduction Strategies of Emissions for Marine Diesel Engines
,”
Fuel
,
279
, p.
118477
.10.1016/j.fuel.2020.118477
4.
Andersson
,
Ö.
, and
Börjesson
,
P.
,
2021
, “
The Greenhouse Gas Emissions of an Electrified Vehicle Combined With Renewable Fuels: Life Cycle Assessment and Policy Implications
,”
Appl. Energy
,
289
, p.
116621
.10.1016/j.apenergy.2021.116621
5.
Mobasheri
,
R.
,
Aitouche
,
A.
,
Peng
,
Z.
, and
Li
,
X.
,
2022
, “
A Numerical Study of the Effects of Oxy-Fuel Combustion Under Homogeneous Charge Compression Ignition Regime
,”
Int. J. Engine Res.
,
23
(
4
), pp.
649
660
.10.1177/1468087421993359
6.
Wang
,
Y.
,
Zhou
,
X.
, and
Liu
,
L.
,
2021
, “
Theoretical Investigation of the Combustion Performance of Ammonia/Hydrogen Mixtures on a Marine Diesel Engine
,”
Int. J. Hydrogen Energy
,
46
(
27
), pp.
14805
14812
.10.1016/j.ijhydene.2021.01.233
7.
Kalghatgi
,
G.
,
Agarwal
,
A. K.
,
Senecal
,
K.
, and
Leach
,
F.
,
2022
, “
Introduction to Engines and Fuels for Future Transport
,”
Engines and Fuels for Future Transport
,
Springer
,
Singapore
, pp.
1
5
.
8.
Borchers
,
M.
,
Keller
,
K.
,
Lott
,
P.
, and
Deutschmann
,
O.
,
2021
, “
Selective Catalytic Reduction of NOx With H2 for Cleaning Exhausts of Hydrogen Engines: Impact of H2O, O2, and NO/H2 Ratio
,”
Ind. Eng. Chem. Res.
,
60
(
18
), pp.
6613
6626
.10.1021/acs.iecr.0c05630
9.
Souliotis
,
T.
,
Koltsakis
,
G.
, and
Samaras
,
Z.
,
2021
, “
Catalyst Modeling Challenges for Electrified Powertrains
,”
Catalysts
,
11
(
5
), p.
539
.10.3390/catal11050539
10.
Gramigni
,
F.
,
Iacobone
,
U.
,
Nasello
,
N. D.
,
Selleri
,
T.
,
Usberti
,
N.
, and
Nova
,
I.
,
2021
, “
Review of Hydrocarbon Poisoning and Deactivation Effects on Cu-Zeolite, Fe-Zeolite, and Vanadium-Based Selective Catalytic Reduction Catalysts for NOx Removal From Lean Exhausts
,”
Ind. Eng. Chem. Res.
,
60
(
18
), pp.
6403
6420
.10.1021/acs.iecr.0c05894
11.
Piqueras
,
P.
,
Burke
,
R.
,
Sanchis
,
E. J.
, and
Diesel
,
B.
,
2022
, “
Fuel Efficiency Optimisation Based on Boosting Control of the Particulate Filter Active Regeneration at High Driving Altitude
,”
Fuel
,
319
, p.
123734
.10.1016/j.fuel.2022.123734
12.
Tu
,
M.
,
Ratnakar
,
R.
, and
Balakotaiah
,
V.
,
2022
, “
Multi-Mode Reduced Order Models for Real Time Simulations of Monolith Reactors With Micro-Kinetics
,”
Chem. Eng. J.
,
430
, p.
132532
.10.1016/j.cej.2021.132532
13.
Sarkar
,
B.
,
Gundlapally
,
S. R.
,
Koutsivitis
,
P.
, and
Wahiduzzaman
,
S.
,
2022
, “
Performance Evaluation of Neural Networks in Modeling Exhaust Gas Aftertreatment Reactors
,”
Chem. Eng. J.
,
433
, p.
134366
.10.1016/j.cej.2021.134366
14.
Pla
,
B.
,
Piqueras
,
P.
,
Bares
,
P.
, and
Aronis
,
A.
,
2022
, “
Simultaneous NOx and NH3 Slip Prediction in a SCR Catalyst Under Real Driving Conditions Including Potential Urea Injection Failures
,”
Int. J. Eng. Res
,
23
(
7
), pp.
1213
1225
.10.1177/14680874211007646
15.
Daya
,
R.
,
Joshi
,
S. Y.
,
Dadi
,
R. K.
,
Tang
,
Y.
,
Trandal
,
D.
,
Srinivasan
,
A.
,
Nusawardhana
,
A. P.
, and
Cunningham
,
M.
,
2021
, “
An Explicit Reduced-Order Model of Cu-Zeolite SCR Catalyst for Embedding in ECM
,”
Chem. Eng. J.
,
413
, p.
127473
.10.1016/j.cej.2020.127473
16.
Piqueras
,
P.
,
Pla
,
B.
,
Sanchis
,
E. J.
, and
Aronis
,
A.
,
2023
, “
Ammonia Slip Estimation Based on ASC Control-Oriented Modelling and OBD NOx Sensor Cross-Sensitivity Analysis
,”
ASME J. Eng. Gas Turbines Power
, 145(4), p. 041014.10.1115/1.4055947
17.
Hayes
,
R. E.
,
Kolaczkowski
,
S. T.
,
Li
,
P. K. C.
, and
Awdry
,
S.
,
2000
, “
Evaluating the Effective Diffusivity of Methane in the Washcoat of a Honeycomb Monolith
,”
Appl. Catal. B: Environ.
,
25
(
2–3
), pp.
93
104
.10.1016/S0926-3373(99)00122-8
18.
Bisset
,
E. J.
,
2015
, “
An Asymptotic Solution for Washcoat Pore Diffusion in Catalytic Monoliths
,”
Emission Control. Sci. Technol.
,
1
, pp.
3
16
.10.1007/s40825-015-0010-2
19.
Joshi
,
S. Y.
,
Harold
,
M. P.
, and
Balakotaiah
,
V.
,
2010
, “
Overall Mass Transfer Coefficients and Controlling Regimes in Catalytic Monoliths
,”
Chem. Eng. Sci.
,
65
(
5
), pp.
1729
1747
.10.1016/j.ces.2009.11.021
20.
Ratnakar
,
R. R.
,
Dadi
,
R. K.
, and
Balakotaiah
,
V.
,
2018
, “
Multi-Scale Reduced Order Models for Transient Simulation of Multi-Layered Monolith Reactors
,”
Chem. Eng. J.
,
352
, pp.
293
305
.10.1016/j.cej.2018.04.053
21.
Rink
,
J.
,
Mozaffari
,
B.
,
Tischer
,
S.
,
Deutschmann
,
O.
, and
Votsmeier
,
M.
,
2017
, “
Real-Time Simulation of Dual-Layer Catalytic Converters Based on the Internal Mass Transfer Coefficient Approach
,”
Top. Catal.
,
60
(
3–5
), pp.
225
229
.10.1007/s11244-016-0602-2
22.
Martín Díaz
,
J.
,
Arnau Martínez
,
F. J.
,
Piqueras
,
P.
, and
Auñón-García
,
Á.
,
2018
, “
Development of an Integrated Virtual Engine Model to Simulate New Standard Testing Cycles
,”
SAE
Paper No. 2018-01-1413.10.4271/2018-01-1413
23.
Piqueras
,
P.
,
Ruiz
,
M. J.
,
Herreros
,
J. M.
, and
Tsolakis
,
A.
,
2021
, “
Influence of the Cell Geometry on the Conversion Efficiency of Oxidation Catalysts Under Real Driving Conditions
,”
Energy Convers. Manage.
,
233
, p.
113888
.10.1016/j.enconman.2021.113888
24.
Piqueras
,
P.
,
Ruiz
,
M. J.
,
Herreros
,
J. M.
, and
Tsolakis
,
A.
,
2021
, “
Sensitivity of Pollutants Abatement in Oxidation Catalysts to the Use of Alternative Fuels
,”
Fuel
,
297
, p.
120686
.10.1016/j.fuel.2021.120686
25.
Kryl
,
D.
,
Kočí
,
P.
,
Kubíček
,
M.
,
Marek
,
M.
,
Maunula
,
T.
, and
Härkönen
,
M.
,
2005
, “
Catalytic Converters for Automobile Diesel Engines With Adsorption of Hydrocarbons on Zeolites
,”
Ind. Eng. Chem. Res.
,
44
(
25
), pp.
9524
9534
.10.1021/ie050249v
26.
Galindo
,
J.
,
Serrano
,
J. R.
,
Piqueras
,
P.
, and
García-Afonso
,
Ó.
,
2012
, “
Heat Transfer Modelling in Honeycomb Wall-Flow Diesel Particulate Filters
,”
Energy
,
43
(
1
), pp.
201
213
.10.1016/j.energy.2012.04.044
27.
Depcik
,
C.
, and
Assanis
,
D.
,
2005
, “
One-Dimensional Automotive Catalyst Modeling
,”
Prog. Energy Combust.
,
31
(
4
), pp.
308
369
.10.1016/j.pecs.2005.08.001
28.
Zhang
,
F.
,
Hayes
,
R. E.
, and
Kolaczkowski
,
S. T.
,
2004
, “
A New Technique to Measure the Effective Diffusivity in a Catalytic Monolith Washcoat
,”
Chem. Eng. Res. Des.
,
82
(
4
), pp.
481
489
.10.1205/026387604323050191
29.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley Inc
.,
New York
.
30.
Fuller
,
E. N.
,
Ensley
,
K.
, and
Giddings
,
J. C.
,
1969
, “
Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections
,”
J. Phys. Chem.
,
73
(
11
), pp.
3679
3685
.10.1021/j100845a020
31.
Hill
,
C. G.
,
1977
,
An Introduction to Chemical Engineering Kinetics & Reaction Design
,
Wiley Inc
.,
New York
.
32.
Gundlapally
,
S. R.
,
Papadimitriou
,
I.
,
Wahiduzzaman
,
T.
, and
Gu
,
T.
,
2016
, “
Development of ECU Capable Grey-Box Models From Detailed Models - Application to a SCR Reactor
,”
Emission Control Sci. Technol.
,
2
(
3
), pp.
124
136
.10.1007/s40825-016-0039-x
33.
Oh
,
S. H.
, and
Cavendish
,
J. C.
,
1982
, “
Transient of Monolithic Catalytic Converters. Response to Step Changes in Feedstream Temperature as Related to Controlling Automobile Emissions
,”
Ind. Eng. Chem. Prod. Res. Dev.
,
21
(
1
), pp.
29
37
.10.1021/i300005a006
34.
Colombo
,
M.
,
Koltsakis
,
G.
,
Nova
,
I.
, and
Tronconi
,
E.
,
2012
, “
Modelling the Ammonia Adsorption-Desorption Process Over an Fe–Zeolite Catalyst for SCR Automotive Applications
,”
Catal. Today
,
188
(
1
), pp.
42
52
.10.1016/j.cattod.2011.09.002
35.
Colombo
,
M.
,
Nova
,
I.
,
Tronconi
,
E.
,
Schmeißer
,
V.
,
Bandl-Konrad
,
B.
, and
Zimmermann
,
L.
,
2013
, “
Experimental and Modeling Study of a Dual-Layer (SCR+ PGM) NH3 Slip Monolith Catalyst (ASC) for Automotive SCR Aftertreatment Systems. Part 1. Kinetics for the PGM Component and Analysis of SCR/PGM Interactions
,”
Appl. Catal. B: Environ.
,
142–143
, pp.
861
876
.10.1016/j.apcatb.2012.10.031
36.
D'Errico
,
J.
,
2021
, “
Functions Fminsearchbnd, Fminsearchcon
,” MATLAB Central File Exchange, accessed Oct. 13, https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon
37.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.10.1137/S1052623496303470
38.
Vaclavik
,
M.
,
Novák
,
V.
,
Březina
,
J.
,
Kočí
,
P.
,
Gregori
,
G.
, and
Thompsett
,
D.
,
2016
, “
Effect of Diffusion Limitation on the Performance of Multi-Layer Oxidation and Lean NOx Trap Catalysts
,”
Catal. Today
,
273
, pp.
112
120
.10.1016/j.cattod.2016.03.013
You do not currently have access to this content.