Abstract

We investigate the effect of transverse acoustic excitation on nonreacting swirling jets. The work is motivated by the azimuthal instabilities in annular gas turbine combustor which are one of the major challenges in aero-engines. We have designed and fabricated a multinozzle linear array combustor to simulate the flow conditions of an annular combustor. The nozzle features a dual corotating radial swirler configuration. Two compression drivers placed on either side of the combustion chamber are used to generate acoustic fields in the direction transverse to the flow. Simultaneous two-dimensional (2D) particle image velocimetry (PIV) and high-frequency pressure measurements are conducted to measure the time-averaged velocity field and the chamber acoustics, respectively. It is observed that once the swirling jet is excited with a transverse acoustic forcing, it instantaneously transitions to a wall-jet state. In wall-jet state, the flow moves radially outwards and remains attached to the walls on either side of the nozzle, and is characterized by a recirculation zone with a strong negative axial velocity. In our experiments, we demonstrate that transverse acoustic excitation can lead to a bistable state in swirling flows. We investigated the acoustic response to low-amplitude forcing on the combustion chamber by performing a forced acoustic response analysis using comsol. It is observed that acoustic forcing leads to a peak response of the radial and azimuthal velocities at the flare of the swirler, which could induce an axisymmetric deflection of the jet shear layer pushing it into a wall-jet state.

References

1.
Lieuwen
,
T. C.
, and
Vigor
,
Y.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
O'Connor
,
J.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Flame and Flow Dynamics of a Self-Excited, Standing Wave Circumferential Instability in a Model Annular Gas Turbine Combustor
,”
ASME
Paper No. GT2013-95897.10.1115/GT2013-95897
3.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.10.1016/j.proci.2012.05.061
4.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
5.
Mazur
,
M.
,
Nygård
,
H. T.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2019
, “
Characteristics of Self-Excited Spinning Azimuthal Modes in an Annular Combustor With Turbulent Premixed Bluff-Body Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5129
5136
.10.1016/j.proci.2018.07.080
6.
Kim
,
J.-W.
,
Gillman
,
W.
,
Emerson
,
B.
,
Wu
,
D.
,
John
,
T.
,
Acharya
,
V.
,
Isono
,
M.
,
Saitoh
,
T.
, and
Lieuwen
,
T.
,
2021
, “
Vishal Acharya, Mitsunori Isono, Toshihiko Saitoh, and Timothy Lieuwen.” Modal Dynamics of High-Frequency Transverse Combustion Instabilities
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6155
6163
.10.1016/j.proci.2020.06.237
7.
Leibovich
,
S.
,
1978
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
221
246
.10.1146/annurev.fl.10.010178.001253
8.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.10.1016/S0360-1285(00)00022-8
9.
Escudier
,
M.
,
1988
, “
Vortex Breakdown: Observations and Explanations
,”
Prog. Aerosp. Sci.
,
25
(
2
), pp.
189
229
.10.1016/0376-0421(88)90007-3
10.
Moise
,
P.
, and
Mathew
,
J.
,
2019
, “
Bubble and Conical Forms of Vortex Breakdown in Swirling Jets
,”
J. Fluid Mech.
,
873
, pp.
322
357
.10.1017/jfm.2019.401
11.
Vanierschot
,
M.
, and
Van den Bulck
,
E.
,
2007
, “
Hysteresis in Flow Patterns in Annular Swirling Jets
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
513
524
.10.1016/j.expthermflusci.2006.06.001
12.
Ogus
,
G.
,
Baelmans
,
M.
, and
Vanierschot
,
M.
,
2016
, “
On the Flow Structures and Hysteresis of Laminar Swirling Jets
,”
Phys. Fluids
,
28
(
12
), p.
123604
.10.1063/1.4972227
13.
Moise
,
P.
,
2020
, “
Bistability of Bubble and Conical Forms of Vortex Breakdown in Laminar Swirling Jets
,”
J. Fluid Mech.
,
889
, A31, pp.
1
35
.10.1017/jfm.2020.105
14.
Moise
,
P.
, and
Mathew
,
J.
,
2021
, “
Hysteresis and Turbulent Vortex Breakdown in Transitional Swirling Jets
,”
J. Fluid Mech.
,
915
, A94, pp.
1
31
.10.1017/jfm.2021.118
15.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2012
, “
Recirculation Zone Dynamics of a Transversely Excited Swirl Flow and Flame
,”
Phys. Fluids
,
24
(
7
), p.
075107
.10.1063/1.4731300
16.
O'Connor
,
J.
,
Lieuwen
,
T.
, and
Kolb
,
M.
,
2011
, “
Visualization of Shear Layer Dynamics in a Transversely Excited, Annular Premixing Nozzle
,”
AIAA
Paper No. 2011-237.10.2514/6.2011-237
17.
Gursul
,
I.
,
1996
, “
Effect of Nonaxisymmetric Forcing on a Swirling Jet With Vortex Breakdown
,”
3rd Shear Flow Conference
, Orlando, FL, July 6–9, p.
3251
.
18.
Gallaire
,
F.
,
Rott
,
S.
, and
Chomaz
,
J.-M.
,
2004
, “
Experimental Study of a Free and Forced Swirling Jet
,”
Phys. Fluids
,
16
(
8
), pp.
2907
2917
.10.1063/1.1758171
19.
Panda
,
J.
, and
McLaughlin
,
D. K.
,
1994
, “
Experiments on the Instabilities of a Swirling Jet
,”
Phys. Fluids
,
6
(
1
), pp.
263
276
.10.1063/1.868074
20.
Keeton
,
B. W.
,
Carpio
,
J.
,
Nomura
,
K. K.
,
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2022
, “
Vortex Breakdown in Variable-Density Gaseous Swirling Jets
,”
J. Fluid Mech.
,
936
, A1, pp.
1
26
.10.1017/jfm.2022.18
21.
Sheen
,
H. J.
,
Chen
,
W. J.
,
Jeng
,
S. Y.
, and
Huang
,
T. L.
,
1996
, “
Correlation of Swirl Number for a Radial-Type Swirl Generator
,”
Exp. Therm. Fluid Sci.
,
12
(
4
), pp.
444
451
.10.1016/0894-1777(95)00135-2
22.
COMSOL
,
2020
,
Acoustics Module User's Guide COMSOL Multiphysics v. 5.1
,
COMSOL AB
,
Stockholm, Sweden
.
You do not currently have access to this content.