Abstract

The cost-effectiveness of turbomachinery is a key aspect within the small-size compressor market. For this reason, Tesla turbomachinery, invented by Nikola Tesla in 1913, could be a good solution, particularly for low volumetric flow applications, where volumetric compressors are usually used. It consists of a bladeless rotor that stands out for its ease of construction and its ability to maintain almost the same performance as size decreases. One of its advantages is that it can run either as a turbine or as a compressor with minor modifications at the stator. The objective of this paper is to investigate a 3 kW Tesla compressor, which design was derived from an analogous Tesla expander prototype (58% isentropic efficiency from the numerical study), by conducting a computational fluid dynamic analysis for different disk gaps and diffuser configurations. The potential of the Tesla compressor is shown to be quite promising, with a peak isentropic efficiency estimated at 53%. Although bladeless compressor is a simple turbomachinery device, different parts, i.e., diffuser, tip clearance, and volute need to be optimized. Utilizing computational fluid dynamics algorithms, different disk gaps and different diffusers are simulated in order to increase the overall performance of the compressor and understand the flow dynamic behavior behind this technology. The dimensionless Ekman number is used to express the optimum disk space of the compressor rotor. Thus, the overall performance of the Tesla compressor is improved by 5–10% points compared to the initial model. Simultaneously, diffuser optimization strategies are applied and proved that there is a direct impact on the optimum design conditions, improving the pressure ratio at high mass flow rates.

References

1.
Tesla
,
N.
,
1913
, “
Turbine
,” U.S. Patent No. 1,061,206.
2.
Tesla
,
N.
,
1913
, “
Fluid Propulsion
,” U.S. Patent No. 1,061,142.
3.
Rice
,
W.
,
1965
, “
An Analytical and Experimental Investigation of Multiple Disk Turbines
,”
ASME J. Eng. Power
,
87
(
1
), pp.
29
36
.10.1115/1.3678134
4.
Lemma
,
E.
,
Deam
,
R.
,
Toncich
,
D.
, and
Collins
,
R.
,
2008
, “
Characterisation of a Small Viscous Flow Turbine
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
96
105
.10.1016/j.expthermflusci.2008.07.009
5.
Renuke
,
A.
,
Reggio
,
F.
,
Silvestri
,
P.
,
Traverso
,
A.
, and
Pascenti
,
M.
,
2020
, “
Experimental Investigation on a 3 kW Air Tesla Expander With High-Speed Generator
,”
ASME
Paper No. GT2020-14572.10.1115/GT2020-14572
6.
Epstein
,
A. H.
,
2004
, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
205
226
.10.1115/1.1739245
7.
Beans
,
E. W.
,
1961
, “
Performance Characteristics of a Friction Disk Turbine
,” Ph.D. thesis,
The Pennsylvania State University
,
State College, PA
.
8.
Sirakov
,
B. T.
,
Gong
,
Y.
,
Epstein
,
A. H.
, and
Tan
,
C. S.
,
2004
, “
Design and Characterization of Micro-Compressor Impellers
,”
ASME
Paper No. GT2004-53332.10.1115/GT2004-53332
9.
Laroche
,
E.
, and
Ribaud
,
Y.
,
1999
, “
An Analysis of the Internal Aerodynamic Losses Produced in the Laminar and Centrifugal Flow Between Two Parallel Co-Rotating Disks
,”
Proceedings of the 3rd European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics
, V. B. Proceedings, London, UK, Mar. 2–5, IMechE Conference Transaction, No. 1999-1B, p. 1112
, Paper No. C557/001/99.https://www.osti.gov/etdeweb/biblio/20026197
10.
Crawford
,
M. E.
, and
Rice
,
W.
,
1974
, “
Calculated Design Data for the Multiple-Disk Pump Using Incompressible Fluid
,”
ASME J. Eng. Power
,
96
(
3
), pp.
274
282
.10.1115/1.3445806
11.
Boyd
,
K. E.
, and
Rice
,
W.
,
1968
, “
Laminar Inward Flow of an Incompressible Fluid Between Rotating Disks With Full Peripheral Admission
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
229
237
.10.1115/1.3601185
12.
Breiter
,
M. C.
, and
Pohlhausen
,
K.
,
1962
, “
Laminar Flow Between Two Parallel Rotating Disks
,”
Aeronautical Research Laboratories, Wright-Patterson Air Force Base
,
OH
, Technical Report No. ARL 62–318.
13.
Rice
,
W.
,
1963
, “
An Analytical and Experimental Investigation of Multiple Disk Pumps and Compressors
,”
ASME J. Eng. Power
,
85
(
3
), pp.
191
198
.10.1115/1.3675253
14.
Boyack
,
K. E.
, and
Rice
,
W.
,
1971
, “
Integral Method for Flow Between Corotating Disks
,”
ASME J. Basic Eng.
,
93
(
3
), pp.
350
354
.10.1115/1.3425252
15.
Hasinger
,
S. H.
, and
Kehrt
,
L. G.
,
1963
, “
Investigation of a Shear Force Pump
,”
ASME J. Eng. Power
,
85
(
3
), pp.
201
206
.10.1115/1.3675258
16.
Rice
,
W.
,
2003
, “
Tesla Turbomachinery
,”
Handbook of Turbomachinery
, Vol.
14
,
E.
Logan
, and
R.
Roy
, eds.,
Marcel Dekker
,
New York
.
17.
Wang
,
B.
,
Okamoto
,
K.
,
Yamaguchi
,
K.
, and
Teramoto
,
S.
,
2014
, “
Loss Mechanisms in Shear-Force Pump With Multiple Corotating Disks
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081101
.10.1115/1.4026585
18.
Oliveira
,
M.
, and
Pascoa
,
J. M.
,
2009
, “
Analytical and Experimental Modeling of a Viscous Disk Pump for MEMS Applications
,”
III National Conference on Fluid Mechanics, Thermodynamics and Energy, MEFTE-BRAGANÇA 09
, Braganca, Portugal, Sept. 17–18, Vol.
9
.https://www.researchgate.net/publication/229002614_Analytical_and_experimental_modeling_of_a_viscous_disc_pump_for_MEMS_applications
19.
Zhu
,
Y.
, and
Jiang
,
P.
,
2014
, “
Experimental and Numerical Investigation of the Effect of Shock Wave Characteristics on the Ejector Performance
,”
Int. J. Refrig.
,
40
, pp.
31
42
.10.1016/j.ijrefrig.2013.11.008
20.
Galindo
,
J.
,
Hoyas
,
S.
,
Fajardo
,
P.
, and
Navarro
,
R.
,
2013
, “
Set-Up Analysis and Optimization of CFD Simulations for Radial Turbines
,”
Eng. Appl. Comput. Fluid Mech.
,
7
(
4
), pp.
441
460
.10.1080/19942060.2013.11015484
21.
Croquer
,
S.
,
Poncet
,
S.
, and
Aidoun
,
Z.
,
2016
, “
Turbulence Modeling of a Single-Phase R134a Supersonic Ejector. Part 1: Numerical Benchmark
,”
Int. J. Refrig.
,
61
, pp.
140
152
.10.1016/j.ijrefrig.2015.07.030
22.
Dewar
,
B.
,
Tiainen
,
J.
,
Jaatinen-Värri
,
A.
,
Creamer
,
M.
,
Dotcheva
,
M.
,
Radulovic
,
J.
, and
Buick
,
J. M.
,
2019
, “
CFD Modelling of a Centrifugal Compressor With Experimental Validation Through Radial Diffuser Static Pressure Measurement
,”
Int. J. Rotating Mach.
,
2019
, pp.
1
12
.10.1155/2019/7415263
23.
Menter
,
F. R.
,
1992
, “
Influence of Freestream Values on k-Omega Turbulence Model Predictions
,”
AIAA J.
,
30
(
6
), pp.
1657
1659
.10.2514/3.11115
24.
Elyamin
,
G. R. A.
,
Bassily
,
M. A.
,
Khalil
,
K. Y.
, and
Gomaa
,
M. S.
,
2019
, “
Effect of Impeller Blades Number on the Performance of a Centrifugal Pump
,”
Alexandria Eng. J.
,
58
(
1
), pp.
39
48
.10.1016/j.aej.2019.02.004
25.
Schmandt
,
B.
, and
Herwig
,
H.
,
2011
, “
Diffuser and Nozzle Design Optimization by Entropy Generation Minimization
,”
Entropy
,
13
(
7
), pp.
1380
1402
. 10.3390/e13071380
26.
Obayashi
,
S.
,
Jeong
,
S.-K.
,
Shimoyama
,
K.
,
Chiba
,
K.
, and
Morino
,
H.
,
2010
, “
Multi-Objective Design Exploration and Its Applications
,”
Int. J. Aeronaut. Space Sci.
,
11
(
4
), pp.
247
265
.10.5139/IJASS.2010.11.4.247
You do not currently have access to this content.