Abstract

We develop a novel method for the identification of mistuned blisks. The method relies on forced response measurements in a certain target frequency band. Modal stiffness deviations and an overall structural damping coefficient are obtained using a least-squares fit, fully consistent with a component-mode-based reduced-order model. To achieve a high frequency resolution in a very short test, we carry out rapid frequency sweeps and use a noise-robust, wavelet-based estimation of the steady-state response. The forcing is eliminated from the equations governing the mistuning parameters, and it is identified separately to reconstruct the forced response if requested. We first validate the method numerically and then apply it experimentally to a compressor blisk with an alternating (B-A) mistuning pattern. While most previous works on mistuning identification are limited to the lowest 1-2 mode families, we assess the method for the seventh (1C) and eighth (3T) mode family. Measured and reconstructed frequency responses are in good to very good agreement. We conclude that the developed method is useful to obtain high-quality estimates of mistuning parameters, which can then be used for vibration prediction.

References

1.
Schönenborn
,
H.
,
Grossmann
,
D.
,
Satzger
,
W.
, and
Zisik
,
H.
,
2009
, “
Determination of Blade-Alone Frequencies of a Blisk for Mistuning Analysis Based on Optical Measurements
,”
ASME
Paper No. GT209-59148.10.1115/GT209-59148
2.
Hönisch
,
P.
,
Strehlau
,
U.
, and
Kühhorn
,
A.
,
2012
, “
Modelling of Industrial Blade Integrated Disks (Blisks) With Regard to Mistuning
,”
Proceedings of ISMA
, Leuven, Belgium, Sept. 17–19, Paper No. 660.https://www.researchgate.net/publication/274316137_Modelling_of_industrial_blade_integrated_disks_blisks_with_regard_to_mistuning
3.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
4.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2014
, “
Geometric Mistuning Identification of Integrally Bladed Rotors Using Modified Modal Domain Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122504
.10.1115/1.4027762
5.
Popig
,
F.
,
Hönisch
,
P.
, and
Kühhorn
,
A.
,
2015
, “
Experimental and Numerical Analysis of Geometrical Induced Mistuning
,”
ASME
Paper No. GT2015-43272.10.1115/GT2015-43272
6.
Nyssen
,
F.
, and
Golinval
,
J.-C.
,
2016
, “
Identification of Mistuning and Model Updating of an Academic Blisk Based on Geometry and Vibration Measurements
,”
Mech. Syst. Signal Process.
,
68–69
, pp.
252
264
.10.1016/j.ymssp.2015.08.006
7.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kühhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.10.1115/GT2017-63446
8.
Carassale
,
L.
,
Bruzzone
,
S.
,
Cavicchi
,
A.
, and
Marrè Brunenghi
,
M.
,
2018
, “
Representation and Analysis of Geometric Uncertainties in Rotor Blades
,”
ASME
Paper No. GT2018-76385.10.1115/GT2018-76385
9.
Schnell
,
R.
,
Lengyel-Kampmann
,
T.
, and
Nicke
,
E.
,
2014
, “
On the Impact of Geometric Variability on Fan Aerodynamic Performance, Unsteady Blade Row Interaction, and Its Mechanical Characteristics
,”
ASME J. Turbomach.
,
136
(
9
), p.
091005
.10.1115/1.4027218
10.
Clark
,
J. P.
,
Beck
,
J. A.
,
Kaszynski
,
A. A.
,
Still
,
A.
, and
Ni
,
R.-H.
,
2017
, “
The Effect of Manufacturing Variations on Unsteady Interaction in a Transonic Turbine
,”
ASME
Paper No. GT2017-64075.10.1115/GT2017-64075
11.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part I: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
150
158
.10.1115/1.1643913
12.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part II: Application
,”
ASME J. Turbomach.
,
126
(
1
), pp.
159
165
.10.1115/1.1643914
13.
Laxalde
,
D.
,
Thouverez
,
F.
,
Sinou
,
J.-J.
,
Baumhauer
,
S.
, and
Lombard
,
J.-P.
,
2006
, “
Mistuning Identification and Model Updating of an Industrial Blisk
,”
ASME
Paper No. GT2006-90569.10.1115/GT2006-90569
14.
Yümer
,
M. E.
,
Ciğeroğlu
,
E.
, and
Özgüven
,
H. N.
,
2010
, “
Mistuning Identification of Bladed Disks Utilizing Neural Networks
,”
ASME
Paper No. GT2010-22129.10.1115/GT2010-22129
15.
Beirow
,
B.
,
Kühhorn
,
A.
, and
Nipkau
,
J.
,
2009
, “
On the Influence of Strain Gauge Instrumentation on Blade Vibrations of Integral Blisk Compressor Rotors Applying a Discrete Model
,”
ASME
Paper No. GT2009-59207.10.1115/GT2009-59207
16.
Weber
,
R.
, and
Kühhorn
,
A.
,
2018
, “
Mistuning Identification Approach With Focus on High-Speed Centrifugal Compressors
,”
ASME
Paper No. GT2018-75382. 10.1115/GT2018-75382
17.
Judge
,
J. A.
,
Pierre
,
C.
, and
Ceccio
,
S. L.
,
2009
, “
Experimental Mistuning Identification in Bladed Disks Using a Component-Mode-Based Reduced-Order Model
,”
AIAA J.
,
47
(
5
), pp.
1277
1287
.10.2514/1.41214
18.
Li
,
J.
,
2007
, “
Experimental Investigation of Mistuned Bladed Disks System Vibration
,”
Ph.D. thesis
,
University of Michigan
,
Ann Arbor, MI
.https://tel.archives-ouvertes.fr/tel-00923790/document
19.
Wang
,
S.
,
Yao
,
J.
, and
Wang
,
J.
,
2010
, “
Mistuning Identification for Integrally Bladed Disks Based on the SNM Technique
,”
ASME
Paper No. GT2010-22105.10.1115/GT2010-22105
20.
Figaschewsky
,
F.
, and
Kühhorn
,
A.
,
2018
, “
An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies, and Mistuning. Part 1: Theory and Benchmark Under Rotating Conditions
,”
Proceedings of the 15th ISUAAAT
, Oxford, UK, Sept. 24–27, Paper No.
ISUAAAT15-048
.https://www-docs.b-tu.de/fgstrukturmechanik/public/ISUAAAT15-048-Figaschewsky_Kuehhorn-SystemID_Part1.pdf
21.
Beirow
,
B.
,
Figaschewsky
,
F.
, and
Kühhorn
,
A.
,
2018
, “
An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning. Part 2: Application to Blisks at Rest
,”
Proceedings of the 15th ISUAAAT
, Oxford, UK, Sept. 24–27, Paper No.
ISUAAAT15-021
.https://www-docs.b-tu.de/fgstrukturmechanik/public/ISUAAAT15-021-Beirow_Kuehhorn_Figaschewsky-SystemID_Part2.pdf
22.
Figaschewsky
,
F.
,
Kühhorn
,
A.
,
Beirow
,
B.
,
Giersch
,
T.
,
Schrape
,
S.
, and
Nipkau
,
J.
,
2019
, “
An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning—Part 3: Application to Engine Data
,”
ASME
Paper No. GT2019-91337.10.1115/GT2019-91337
23.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
24.
Waldherr
,
C. U.
,
Buchwald
,
P.
, and
Vogt
,
D. M.
,
2020
, “
A New Mistuning Identification Method Based on the Subset of Nominal System Modes Method
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021016
.10.1115/1.4045517
25.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
26.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
1997
, “
A Normalized Modal Eigenvalue Approach for Resolving Modal Interaction
,”
ASME J. Eng. Gas Turbines Power
,
119
(
3
), pp.
647
650
.10.1115/1.2817033
27.
Kenyon
,
J. A.
, and
Griffin
,
J. H.
,
2003
, “
Experimental Demonstration of Maximum Mistuned Bladed Disk Forced Response
,”
ASME J. Turbomach.
,
125
(
4
), pp.
673
681
.10.1115/1.1624847
28.
Kelly
,
S. T.
,
Lupini
,
A.
, and
Epureanu
,
B. I.
,
2022
, “
Data-Driven Approach for Identifying Mistuning in as-Manufactured Blisks
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051006
.10.1115/1.4052503
29.
Carassale
,
L.
,
Marrè-Brunenghi
,
M.
, and
Patrone
,
S.
,
2018
, “
Wavelet-Based Identification of Rotor Blades in Passage-Through-Resonance Tests
,”
Mech. Syst. Signal Process.
,
98
, pp.
124
138
.10.1016/j.ymssp.2017.04.023
30.
Schönenborn
,
H.
,
Retze
,
U.
,
Ziller
,
G.
, and
Waniczek
,
P.
,
2010
, “
Experimental and Analytical Mistuning Analysis of a Blisk at Lab Conditions and Under Rig Conditions Using Tip Timing
,”
ASME
Paper No. GT2010-22447. 10.1115/GT2010-22447
31.
Kammer
,
D. C.
,
1991
, “
Sensor Placement for on-Orbit Modal Identification and Correlation of Large Space Structures
,”
J. Guid., Control, Dyn.
,
14
(
2
), pp.
251
259
.10.2514/3.20635
32.
Hackenberg
,
H.-P.
, and
Hartung
,
A.
,
2015
, “
An Approach for Estimating the Effect of Transient Sweep Through a Resonance
,”
ASME J. Eng. Gas Turbines Power
, 138(8), p.
082502
.10.1115/1.4032664
33.
ISO
,
2015
, “
Vibration and Shock-Experimental Determination of Mechanical Mobility—Part 2: Measurements Using Single-Point Translation Excitation With an Attached Vibration Exciter
,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. 7626-2:2015.
34.
Ayers
,
J. P.
,
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2006
, “
A Reduced-Order Model for Transient Analysis of Bladed Disk Forced Response
,”
ASME J. Turbomach.
,
128
(
3
), pp.
466
473
.10.1115/1.2185675
35.
Madden
,
A. C.
,
Castanier
,
M. P.
, and
Epureanu
,
B. I.
,
2008
, “
Reduced-Order Model Construction Procedure for Robust Mistuning Identification of Blisks
,”
AIAA J.
,
46
(
11
), pp.
2890
2898
.10.2514/1.37314
You do not currently have access to this content.