Abstract

This work simulates a laboratory-scale three-dimensional methane/air burner, which features a bluff body stabilized, lean partially premixed flame experiencing strong limit cycle oscillations. A thin steel liner is installed around the combustion chamber, which heavily interacts with the flow field and produces large amplitude structural deformation via fluid–structure interaction (FSI). An unsteady Reynolds averaged Navier–Stokes (URANS) approach uses the shear stress transport (SST) turbulence model and a flamelet generated manifold (FGM) combustion model to predict the thermoacoustic oscillations in the turbulent reacting flow. The solver also has a built-in finite element structure model, which solves the structural governing equations simultaneously with the computational fluid dynamics (CFD)-computed, finite volume flow equations. This way, a fully coupled, two-way FSI simulation can be performed to predict the thermoacoustic instabilities and the associated solid deformations in the burner. Overall, the predicted strongest pressure oscillation and wall displacement modes (frequency and amplitude) are all in good agreement with the experimental data across different operating conditions. The established workflow may support realistic gas turbine combustor design and prognosis.

References

1.
Moore
,
M. J.
,
1997
, “
NOx Emission Control in Gas Turbines for Combined Cycle Gas Turbine Plant
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
1
), pp.
43
52
.10.1243/0957650971536980
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbines, Operational Experience, Fundamental Mechanisms, and Modeling
(Progress in Astronautics and Aeronautics), Vol.
210
,
AIAA
,
Reston, VA
.
3.
Xia
,
Y.
,
Laera
,
D.
,
Morgans
,
A. S.
,
Jones
,
W. P.
, and
Rogerson
,
J. W.
,
2018
, “
Thermoacoustic Limit Cycle Predictions of a Pressurised Longitudinal Industrial Gas Turbine Combustor
,”
ASME
Paper No. GT2018-75146.10.1115/GT2018-75146
4.
Xia
,
Y.
,
Laera
,
D.
,
Jones
,
W. P.
, and
Morgans
,
A. S.
,
2019
, “
Numerical Prediction of the Flame Describing Function and Thermoacoustic Limit Cycle for a Pressurized Gas Turbine Combustor
,”
Combust. Sci. Technol.
,
191
(
5–6
), pp.
979
1002
.10.1080/00102202.2019.1583221
5.
Xia
,
Y.
,
2019
, “
Prediction of Thermoacoustic Instability in Gas Turbine Combustors
,”
Ph.D. thesis
,
Imperial College London
,
London, UK
.https://www.researchgate.net/publication/235328588_Prediction_of_the_Thermoacoustic_Combustion_Instability_in_Gas_Turbines
6.
Giacomazzi
,
E.
,
Giulietti
,
E.
,
Stringola
,
C.
,
Cassani
,
S.
,
Pagliari
,
L.
, and
Chiocchini
,
S.
,
2014
, “
Combustion Monitoring in Gas Turbines and Enhanced Stability at Very Lean Conditions
,”
ASME
Paper No. GT2014-25506.10.1115/GT2014-25506
7.
Goy
,
C. J.
,
James
,
S. R.
, and
Rea
,
S.
,
2005
, “
Monitoring Combustion Instabilities: E.ON UK's Experience
,”
Prog. Aerosp. Sci.
,
210
, p.
163
.10.2514/5.9781600866807.0163.0175
8.
Bulat
,
G.
,
Stopford
,
P.
,
Turrell
,
M.
,
Frach
,
D.
,
Buchanan
,
E.
, and
Stöhr
,
M.
,
2009
, “
Prediction of Aerodynamic Frequencies in a Gas Turbine Combustor Using Transient CFD
,”
ASME
Paper No. GT2009-59721.10.1115/GT2009-59721
9.
Innocenti
,
A.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Peschiulli
,
A.
,
2017
, “
Numerical Analysis of the Dynamic Flame Response of a Spray Flame for Aero-Engine Applications
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
310
329
.10.1177/1756827717703577
10.
Chimakurthi
,
S. K.
,
Reuss
,
S.
,
Tooley
,
M.
, and
Scampoli
,
S.
,
2018
, “
ANSYS Workbench System Coupling: A State-of-the-Art Computational Framework for Analyzing Multiphysics Problems
,”
Eng. Comput.
,
34
(
2
), pp.
385
411
.10.1007/s00366-017-0548-4
11.
Ansys, Inc.
,
2021
, “
Ansys CFX-Solver Theory Guide, Release 2021R2
,”
Canonsburg, PA
.
12.
Ansys, Inc.
,
2021
, “
Ansys Mechanical APDL Theory Reference, Release 2021R2
,”
Canonsburg, PA
.
13.
Shahi
,
M.
,
Kok
,
J. B.
, and
Alemela
,
P.
,
2012
, “
Simulation of 2-Way Fluid Structure Interaction in a 3D Model Combustor
,”
ASME
Paper No. GT2012-6968110.1115/GT2012-69681.
14.
Alemela
,
P. R.
,
Casado
,
J. R.
,
Kumar
,
S.
, and
Kok
,
J.
,
2013
, “
Thermoacoustic Analysis of the Dynamic Pressure Inside a Model Combustor During Limit Cycle Oscillations
,”
Int. J. Spray Combust. Dyn.
,
5
(
1
), pp.
25
47
.10.1260/1756-8315.5.1.25
15.
Shahi
,
M.
,
Kok
,
J. B.
,
Roman Casado
,
J.
, and
Pozarlik
,
A. K.
,
2018
, “
Strongly Coupled Fluid–Structure Interaction in a Three-Dimensional Model Combustor During Limit Cycle Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061505
.10.1115/1.4038234
16.
Jemcov
,
A.
, Cokljat, D., and
Maruszewski
,
J. P.
,
2015
, “
An Implicit Algorithm for Finite Volume - Finite Element Coupling
,” Sixth International Conference on Computational Methods (
ICCM2015
), Auckland, New Zealand, July 14–17.https://www.researchgate.net/publication/285753713_An_Implicit_Algorithm_for_Finite_Volume_-_Finite_Element_Coupling
17.
Ansys, Inc.
,
2021
, “
Ansys Fluent Theory Guide. Release 2021R2
,”
Ansys
,
Canonsburg, PA
.
18.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
19.
Van Oijen
,
J.
, and
De Goey
,
L.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
20.
Verma
,
I.
,
Yadav
,
R.
,
Orsino
,
S.
,
Sharkey
,
P.
, and
Nakod
,
P.
,
2019
, “
Large Eddy Simulations of Premixed Bluff Body Stabilized Flame Using Detailed Chemistry With Flamelet Generated Manifold: Grid Sensitivity Analysis
,”
AIAA
Paper No. AIAA 2019-0454.10.2514/6.AIAA 2019-0454
21.
Xia
,
Y.
,
Verma
,
I.
,
Zore
,
K.
, and
Sharkey
,
P.
,
2020
, “
SBES/FGM Simulation of Forced Response of a Premixed Bluff-Body Stabilized Flame
,”
AIAA
Paper No. AIAA 2020-0175.10.2514/6.AIAA 2020-0175
22.
Xia
,
Y.
,
Sharkey
,
P.
,
Orsino
,
S.
,
Kuron
,
M.
,
Menter
,
F.
,
Verma
,
I.
,
Malecki
,
R.
, and
Sen
,
B.
,
2020
, “
SBES/FGM Simulation of Film-Cooled Surface Heat Transfer and Near-Wall Reaction
,”
ASME
Paper No. GT2020-14717.10.1115/GT2020-14717
23.
Xia
,
Y.
,
Sharkey
,
P.
,
Orsino
,
S.
,
Kuron
,
M.
,
Menter
,
F.
,
Verma
,
I.
,
Malecki
,
R.
, and
Sen
,
B.
,
2021
, “
Stress-Blended Eddy Simulation/Flamelet Generated Manifold Simulation of Film-Cooled Surface Heat Transfer and Near-Wall Reaction
,”
ASME J. Turbomach.
,
143
(
1
), p.
011008
.10.1115/1.4049133
24.
Xia
,
Y.
,
Stopford
,
P.
,
Sharkey
,
P.
, and
Verma
,
I.
,
2021
, “
Dynamic Mesh Adaption for Scale-Resolving Reacting Flow Simulations
,”
ASME
Paper No. GT2021-59100.10.1115/GT2021-59100
25.
Xia
,
Y.
,
Sharkey
,
P.
,
Verma
,
I.
,
Khaware
,
A.
, and
Cokljat
,
D.
,
2022
, “
Prediction of Thermoacoustic Instability and Fluid-Structure Interactions for Gas Turbine Combustor
,”
ASME
Paper No. GT2022-78296.10.1115/GT2022-78296
26.
Xia
,
Y.
,
Verma
,
I.
,
Nakod
,
P.
,
Yadav
,
R.
,
Orsino
,
S.
, and
Li
,
S.
,
2022
, “
Numerical Simulations of a Lifted Hydrogen Jet Flame Using Flamelet Generated Manifold Approach
,”
ASME
Paper No. GT2022-80733.10.1115/GT2022-80733
27.
Casado
,
J. C. R.
,
2013
, “
Nonlinear Behavior of the Thermoacoustic Instabilities in the Limousine Combustor
,” Ph.D. thesis,
University of Twente
,
Enschede, The Netherlands
.
28.
Tufano
,
S.
,
Stopford
,
P.
,
Roman Casado
,
J.
, and
Kok
,
J. B.
,
2012
, “
Modelling Flame-Generated Noise in a Partially Premixed, Bluff Body Stabilized Model Combustor
,”
ASME
Paper No. GT2012-6950110.1115/GT2012-69501.
29.
Ansys, Inc.
,
2021
, “
Ansys Granta Material Properties Database for Simulation (MDS). Release 2021R2
,”
Ansys
,
Canonsburg, PA
.
30.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.10.1061/JMCEA3.0000098
31.
Gregory
,
P. S.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S. W. C.
,
Gardiner
,
J.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2021
, “
GRI-Mech 3.0
,” UC Berkeley, Berkeley, CA, accessed Nov. 23, 2021, http://combustion.berkeley.edu/gri-mech/
32.
Ansys, Inc.
,
2021
, “
Ansys Fluent User's Guide. Release 2021R2
,”
Ansys
,
Canonsburg, PA
.
You do not currently have access to this content.