Abstract

The turbocharged piston-driven engines are widely used in high altitude long endurance unmanned aerial vehicles (HALE UAVs). Repeated actions of engine pistons and valves give rise to engine pulsations resulting in intensive unsteady flows in the turbocharger. One-dimensional (1-D) modeling, which is computationally effective, plays a crucial role in evaluating turbocharger performance and conducting turbocharger-engine matching under pulsating conditions. The present work introduces a newly developed 1-D software (TURBODYNA) for the sake of improving traditional 1-D modeling's accuracy and generality. The advantages and capabilities of TURBODYNA are illustrated by applying it to three different and typical sorts of turbocharger applications: the single-entry turbine, the twin-entry turbine, and the centrifugal compressor. The unsteady testing conditions include high frequent pressure pulses for the single-entry turbine, out-of-phase pressure pulses for the twin-entry turbine, and rotating stall and surge for the centrifugal compressor. Results show that, by contrast to traditional 1-D modelings, the current 1-D modeling has achieved exceptional improvements in both accuracy and applicability. The novel and powerful tool provides a solid framework for assessing turbocharger unsteady performances and addressing turbocharger-engine matching.

References

1.
Tsach
,
S.
,
Yaniv
,
A.
,
Avni
,
H.
, and
Penn
,
D.
,
1996
, “
High Altitude Long Endurance (Hale) Uav for Intelligence Missions
,”
ICAS Proceedings
, Sorrento, Italy, Sept. 8–13, Vol.
20
, pp.
368
379
.https://www.icas.org/ICAS_ARCHIVE/ICAS1996/ICAS-96-4.2.1.pdf
2.
Bettner
,
J. L.
,
Blandford
,
C. S.
, and
Rezy
,
B. J.
,
1995
,
Propulsion System Assessment for Very High Altitude UAV Under ERAST
,
National Aeronautics and Space Administration
, Washington, DC.
3.
Rodgers
,
C.
,
2001
, “
Turbocharging a High Altitude UAV C.I. Engine
,”
37th Joint Propulsion Conference and Exhibit
, Salt Lake City, UT, July 8–11, p.
3970
.10.2514/6.2001-3970
4.
Cirigliano
,
D.
,
Frisch
,
A. M.
,
Liu
,
F.
, and
Sirignano
,
W. A.
,
2018
, “
Diesel, Spark-Ignition, and Turboprop Engines for Long-Duration Unmanned Air Flights
,”
J. Propul. Power
,
34
(
4
), pp.
878
892
.10.2514/1.B36547
5.
Perez
,
P. L.
, and
Boehman
,
A. L.
,
2010
, “
Performance of a Single-Cylinder Diesel Engine Using Oxygen-Enriched Intake Air at Simulated High-Altitude Conditions
,”
Aerosp. Sci. Technol.
,
14
(
2
), pp.
83
94
.10.1016/j.ast.2009.08.001
6.
Botwick
,
A. F.
,
High Altitude Long Endurance Aircraft Configurations
,
Academia
. edu. nd.
7.
Wilkinson
,
R. E.
, and
Benway
,
R. B.
,
1991
, “
Liquid Cooled Turbocharged Propulsion System for Hael Application
,”
ASME
Paper No. 91-GT-399.10.1115/91-GT-399
8.
Xue
,
Y.
,
Yang
,
M.
,
Martinez-Botas
,
R. F.
,
Yang
,
B.
, and
Deng
,
K.
,
2019
, “
Unsteady Performance of a Mixed-Flow Turbine With Nozzled Twin-Entry Volute Confronted by Pulsating Incoming Flow
,”
Aerosp. Sci. Technol.
,
95
, p.
105485
.10.1016/j.ast.2019.105485
9.
Shu
,
M.
,
Yang
,
M.
,
Zhang
,
K.
,
Deng
,
K.
,
Yang
,
B.
, and
Martinez-Botas
,
R.
,
2019
, “
Experimental Study on Performance of Centrifugal Compressor Exposed to Pulsating Backpressure
,”
Aerosp. Sci. Technol.
,
95
, p.
105450
.10.1016/j.ast.2019.105450
10.
Yang
,
M.
,
Zhang
,
K.
,
Shu
,
M.
, and
Deng
,
K.
,
2020
, “
Experimental Study on Unsteady Flow Field in a Centrifugal Compressor at Pulsating Backpressure Conditions
,”
Aerosp. Sci. Technol.
,
106
, p.
106168
.10.1016/j.ast.2020.106168
11.
Xue
,
Y.
,
Yang
,
M.
,
Martinez-Botas
,
R. F.
,
Romagnoli
,
A.
, and
Deng
,
K.
,
2019
, “
Loss Analysis of a Mix-Flow Turbine With Nozzled Twin-Entry Volute at Different Admissions
,”
Energy
,
166
, pp.
775
788
.10.1016/j.energy.2018.10.075
12.
Capobianco
,
M.
, and
Gambarotta
,
A.
,
1993
, “
Performance of a Twin-Entry Automotive Turbocharger Turbine
,”
ASME
Paper No. 93-ICE-2.https://www.academia.edu/65154580/Performance_of_a_twin_entry_automotive_turbocharger_turbine?from_sitemaps=true&version=2
13.
Costall
,
A. W.
,
McDavid
,
R. M.
,
Martinez-Botas
,
R. F.
, and
Baines
,
N. C.
,
2011
, “
Pulse Performance Modeling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission
,”
ASME J. Turbomach.
,
133
(
2
), p.
021005
.10.1115/1.4000566
14.
Kang
,
Y. S.
,
Lim
,
B. J.
, and
Cha
,
B. J.
,
2017
, “
Multi-Stage Turbocharger System Analysis Method for High Altitude Uav Engine
,”
J. Mech. Sci. Technol.
,
31
(
6
), pp.
2803
2811
.10.1007/s12206-017-0523-4
15.
Huang
,
Q.
,
Zhang
,
M.
, and
Zheng
,
X.
,
2019
, “
Compressor Surge Based on a 1D-3D Coupled Method–Part 2: Surge Investigation
,”
Aerosp. Sci. Technol.
,
90
, pp.
289
298
.10.1016/j.ast.2019.04.042
16.
Chen
,
H.
,
Hakeem
,
I.
, and
Martinez-Botas
,
R. F.
,
1996
, “
Modelling of a Turbocharger Turbine Under Pulsating Inlet Conditions
,”
J. Power Energy
,
210
(
5
), pp.
397
408
.10.1243/PIME_PROC_1996_210_063_02
17.
Technologies
,
G.
,
2018
,
GT-power: User's Manual and Tutorial
.
18.
Ricardo
,
W.
,
2006
,
Software User Manual and Tutorial
.
19.
Assanis
,
D.
,
Filipi
,
Z.
,
Gravante
,
S.
,
Grohnke
,
D.
,
Gui
,
X.
,
Louca
,
L.
,
Rideout
,
G.
,
Stein
,
J.
, and
Wang
,
Y.
,
2000
, “
Validation and Use of Simulink Integrated, High Fidelity, Engine-ln-Vehicle Simulation of the International Class VI Truck
,”
SAE Trans.
, 109(3), pp.
384
399
.10.4271/2000-01-0288
20.
Costall
,
A.
,
2008
, “
A One-Dimensional Study of Unsteady Wave Propageation in Turbocharger Turbines
,”
Ph.D. thesis
,
Imperial College London
,
London, UK
.10.25560/18232
21.
Shu
,
M.
,
Yang
,
B.
,
Yang
,
M.
,
Martinez-Botas
,
R. F.
, and
Zhuge
,
W.
,
2022
, “
Compressor Stability at Pulsating Condition Via Gas Dynamics Responses Analysis
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021017
.10.1115/1.4052664
22.
Macek
,
J.
, and
Vitek
,
O.
,
2008
, “
Simulation of Pulsating Flow Unsteady Operation of a Turbocharger Radial Turbine
,”
SAE
Paper No. 2008-01-0295.10.4271/2008-01-0295
23.
Galindo
,
J.
,
Tiseira
,
A.
,
Fajardo
,
P.
, and
Navarro
,
R.
,
2011
, “
Coupling Methodology of 1D Finite Difference and 3D Finite Volume Cfd Codes Based on the Method of Characteristics
,”
Math. Comput. Model.
,
54
(
7–8
), pp.
1738
1746
.10.1016/j.mcm.2010.11.078
24.
Huang
,
Q.
,
Zhang
,
M.
, and
Zheng
,
X.
,
2019
, “
Compressor Surge Based on a 1D-3D Coupled Method–Part 1: Method Establishment
,”
Aerosp. Sci. Technol.
,
90
, pp.
342
356
.10.1016/j.ast.2019.04.040
25.
Bozza
,
F.
,
De Bellis
,
V.
,
Marelli
,
S.
, and
Capobianco
,
M.
,
2011
, “
1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines Under Unsteady Flow Conditions
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1365
1384
.10.4271/2011-01-1147
26.
Copeland
,
C. D.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2011
, “
Comparison Between Steady and Unsteady Double-Entry Turbine Performance Using the Quasi-Steady Assumption
,”
ASME J. Turbomach.
,
133
(
3
), p.
031001
.10.1115/1.4000580
27.
Chiong
,
M. S.
,
Rajoo
,
S.
,
Romagnoli
,
A.
,
Costall
,
A. W.
, and
Martinez-Botas
,
R. F.
,
2016
, “
One-Dimensional Pulse-Flow Modeling of a Twin-Scroll Turbine
,”
Energy
,
115
, pp.
1291
1304
.10.1016/j.energy.2016.09.041
28.
Yang
,
B.
,
Martinez-Botas
,
R.
, and
Yang
,
M.
,
2022
, “
Rotor Flow-Field Timescale and Unsteady Effects on Pulsed-Flow Turbocharger Turbine
,”
Aerosp. Sci. Technol.
,
120
, p.
107231
.10.1016/j.ast.2021.107231
29.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
30.
Thompson
,
K. W.
,
1987
, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
,
68
(
1
), pp.
1
24
.10.1016/0021-9991(87)90041-6
31.
Poinsot
,
T. J.
, and
Lelef
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
32.
Yang
,
B.
, and
Martinez-Botas
,
R.
,
2019
, “
Turbodyna: Centrifugal/Centripetal Turbomachinery Dynamic Simulator and Its Application on a Mixed Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101012
.10.1115/1.4044681
33.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2007
,
Internal Flow: Concepts and Applications
,
Cambridge University Press
, Cambridge, UK.
34.
Yang
,
B.
,
Newton
,
P.
, and
Martinez-Botas
,
R.
,
2020
, “
Understanding of Secondary Flows and Losses in Radial and Mixed Flow Turbines
,”
ASME J. Turbomach.
,
142
(
8
), p.
081006
.10.1115/1.4046487
35.
Winterbone
,
D. E.
, and
Pearson
,
R. J.
,
2000
,
Theory of Engine Manifold Design: Wave Action Methods for IC Engines
,
Wiley-Blackwell
, Hoboken, NJ.
36.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.10.1115/1.4031473
37.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors–Part i: Theoretical Compression System Model
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
38.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors–Part ii: Experimental Results and Comparison With Theory
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
199
211
.10.1115/1.3446139
39.
Garrard
,
G. D.
,
1995
, “
ATEC: The Aerodynamic Turbine Engine Code for the Analysis of Transient and Dynamic Gas Turbine Engine System Operations
,”
Ph.D. thesis
,
The University of Tennessee
, Knoxville, TN.https://trace.tennessee.edu/utk_graddiss/1605/
40.
Davis
,
M. W.
, Jr
,
1987
, “
A Stage-by-Stage Post-Stall Compression System Modeling Technique: Methodology, Validation, and Application
,”
Ph.D. thesis
,
Virginia Polytechnic Institute and State University
, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/50002
You do not currently have access to this content.