Abstract

The performance of the high-pressure (HP) compressor is very important for the two-stage turbocharging system. However, the performance of HP compressor on the engine most of the time is poor at low speed and low mass flow conditions. These will lead to poor engine performance at low engine speed. The purpose of this paper is to improve the performance of the HP compressor at low speed and low mass flow conditions. The Latin hypercube design of the experiment method is used to establish the Kriging model and global optimization by multi-objective genetic algorithm NSGA-II to optimal HP compressor. The simulation results indicated that the flow field within the compressor was improved and the high entropy generation area was reduced. The new design delayed the mixing between the tip clearance leakage vortex flow and main flow. The low-speed performance of the HP compressor was improved. The turbocharger gas stand tests and engine bench tests were carried out. The results showed that the efficiency and pressure ratio of the optimized design is increased by 2.1% and 3%, respectively. The engine achieved better performance in low-speed conditions. The pumping means effective pressure (PMEP) and intake airflow increased by 7% and 4.98%, respectively, while brake specific fuel consumption (BSFC) and soot emissions decreased by 0.56% and 32.8%, respectively.

References

1.
Liang
,
D.
,
Yang
,
H.
,
Xu
,
C.
,
Jiang
,
Y.
, and
Yi
,
Z.
,
2020
, “
The Recent Progresses in Industrial Centrifugal Compressor Designs
,”
Int. J. Fluid Mech. Therm. Sci.
,
6
(
2
), pp.
61
69
.10.11648/j.ijfmts.20200602.13
2.
Hu
,
Z.
,
Deng
,
K.
,
Cui
,
Y.
,
Yang
,
X.
, and
Zhang
,
B.
,
2018
, “
Steady-State and Transient Control Strategies for a Two-Stage Turbocharged Diesel Engine
,”
Proc. Inst. Mech. Eng., Part D J. Autom. Eng.
,
232
(
9
), pp.
1167
1179
.10.1177/0954407017727442
3.
Bozza
,
F.
,
De Bellis
,
V.
,
Teodosio
,
L.
, and
Gimelli
,
A.
,
2013
, “
Numerical Analy-Sis of the Transient Operation of a Turbocharged Dieselengine Including the Compressor Surge
,”
Proc. Inst. Mech. E Part D J Autom. Eng.
,
227
(
11
), pp.
1503
1517
.10.1177/0954407013501668
4.
Xu
,
C.
, and
Amano
,
R. S.
,
2018
, “
Centrifugal Compressor Performance Improvements Through Impeller Splitter Location
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051201
.10.1115/1.4037813
5.
Hah
,
C.
, and
Krain
,
H.
,
1990
, “
Secondary Flows and Vortex Motion in a High-Efficiency Backswept Impeller at Design and Off-Design Conditions
,”
ASME J. Turbomach.
,
112
(
1
), pp.
7
13
.10.1115/1.2927425
6.
Nili-Ahmadabadi
,
M.
,
Hajilouy-Benisi
,
A.
,
Durali
,
M.
, and
Ghadak
,
F.
,
2008
, “
Investigation of a Centrifugal Compressor and Study of the Area Ratio and TIP Clearance Effects on Performance
,”
J. Therm. Sci.
,
17
(
4
), pp.
314
323
.10.1007/s11630-008-0314-1
7.
Josuhn-Kadner
,
B.
,
1994
, “
Flow Field and Performance of a Centrifugal Compressor Rotor With Tandem Blades of Adjustable Geometry
,”
ASME
Paper No. 94-GT-013.10.1115/94-GT-013
8.
Jaatinen
,
A.
,
Turunen-Saaresti
,
T.
,
Grönman
,
A.
, Röyttä, P., and Backman, J.,
2012
, “
Experimental Study of the Effect of the Tip Clearance to the Diffuser Flow Field and Stage Performance of a Centrifugal Compressor
,”
ASME
Paper No. GT2012-68445.10.1115/GT2012-68445
9.
Shibata
,
T.
,
Yagi
,
M.
,
Nishida
,
H.
, Kobayashi, H., and Tanaka, M.,
2010
, “
Performance Improvement of a Centrifugal Compressor Stage by Increasing Degree of Reaction and Optimizing Blade Loading of a 3D Impeller
,”
ASME J. Turbomach.
, 133(2), p. 021004.10.1115/1.4000565
10.
Kang
,
H. S.
, and
Kim
,
Y. J.
,
2016
, “
A Study on the Multi-Objective Optimization of Impeller for High-Power Centrifugal Compressor
,”
Int. J. Fluid Mach. Syst.
,
9
(
2
), pp.
143
149
.10.5293/IJFMS.2016.9.2.143
11.
Zhang
,
C.
,
2012
, “
Optimization of Centrifugal Impellers for Uniform Discharge Flow and Wide Operating Range
,”
J. Propul. Power
,
28
(
5
), pp.
888
e99
.10.2514/1.B34193
12.
Kim
,
J.-H.
,
Choi
,
J.-H.
,
Husain
,
A.
, and
Kim
,
K.-Y.
,
2010
, “
Design Optimization of a Centrifugal Compressor Impeller by Multi-Objective Genetic Algorithm
,”
ASME
Paper No. FEDSM2009-78486.10.1115/FEDSM2009-78486
13.
Li
,
J.
,
Zhou
,
Z.
,
Feng
,
Z.
,
Guo
,
Z.
, and
Song
,
L.
,
2015
, “
Multi-Objective Aerodynamic Optimization Design and Data Mining of a High Pressure Ratio Centrifugal Impeller
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p. 092602.10.1115/1.4029882
14.
Barsi
,
D.
,
Costa
,
C.
,
Cravero
,
C.
, and
Ricci
,
G.
, “
Aerodynamic Design of a Centrifugal Compressor Stage Using an Automatic Optimization Strategy
,”
ASME
Paper No. GT2014-26465.10.1115/GT2014-26465
15.
Kim
,
J. H.
,
Choi
,
J. H.
, and
Kim
,
K. Y.
,
2010
, “
Surrogate Modeling for Optimization of a Centrifugal Compressor Impeller
,”
Int. J. Fluid Mach. Syst
,
3
(
1
), pp.
29
38
.10.5293/IJFMS.2010.3.1.029
16.
Yang
,
H. Q.
,
2011
,
Clean-Combustion Mechanism Research for HSDI Diesel Engine Based on Turbocharging Coupling With Exhaust Gas Recirculation
,
Hunan University
, Changsha, Hunan, China.
17.
Zou
,
Y.
,
Xiang-Sheng
,
L. I.
, and
Yang
,
H. Q.
,
2015
, “
Matching a Simulation for Regulated Two-Stage Turbocharging System of a Diesel Engine
,”
Comput. Simul.
,
32
(
5
), pp.
284
289
.
18.
Xu
,
C.
, and
Amano
,
R. S.
,
2002
, “
A Turbomachinery Blade Design and Optimization Procedure
,”
ASME
Paper No. GT2002-30541.10.1115/GT2002-30541
19.
Weber
,
C. R.
, and
Koronowski
,
M. E.
,
1987
, “
Meanline Performance Prediction of Volutes in Centrifugal Compressors
,”
ASME
Paper No. 86-gt-216.10.1115/86-gt-216
20.
Arora
,
J. S.
,
1998
,
Introduction to Optimum Design
,
MCGraw-Hill
,
New York
.
21.
Bonaiuti
,
D.
,
Arnone
,
A.
,
Ermini
,
M.
, and
Baldassarre
,
L.
,
2006
, “
Analysis and Optimization of Transonic Centrifugal Compressor Impellers Using the Design of Experiments Technique
,”
ASME J. Turbomach.
,
128
(
4
), pp.
786
797
.10.1115/1.1579507
22.
Harry
,
M. J.
,
1997
,
The Nature of Six Sigma Quality
,
Motorola University Press
,
Shaumburg, IL
.
23.
Xu
,
C.
, and
Amano
,
R. S.
,
2000
, “
A Hybrid Numerical Procedure for Cascade flow Analysis
,”
Numer. Heat Transfer, PartB
,
37
(
2
), pp.
141
164
.10.1080/104077900275468
24.
Xu
,
C.
, and
Amano
,
R. S.
,
2004
, “
Computational Analysis of Pitch Width Effects on the Secondary flows of Turbine Blades
,”
Comput. Mech.
,
34
(
2
), pp.
111
120
.10.1007/s00466-004-0558-0
25.
Tamaki
,
H.
,
2017
, “
Experimental Study on the Effect of Diffuser Vane Setting Angle on Centrifugal Compressor Performance
,”
ASME J. Turbomach.
,
139
(
6
), p.
061001
.10.1115/1.4035212
26.
Zheng
,
X.
,
Huang
,
Q.
, and
Liu
,
A.
,
2016
, “
Loss Mechanisms and Flow Control for Improved Efficiency of a Centrifugal Compressor at High Inlet Prewhirl
,”
ASME. J. Turbomach.
,
138
(
10
), p.
101011
.10.1115/1.4033216
27.
Li
,
Q.
,
Yang
,
D.
,
Hu
,
L.
, and
Sheng
,
X.
,
2014
, “
Optimization of Turbocharger Compressor Stages Using DOE for Vehicle Engine Application
,”
SAE
Paper No. 2014-01-0406.10.4271/2014-01-0406
28.
Xu
,
C.
, and
Amano
,
R. S.
,
2012
, “
Empirical Design Considerations for Industrial Centrifugal Compressors
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
15
.10.1155/2012/184061
29.
Japikse
,
D.
,
Centrifugal Compressor Design and Performance
,
Concept NREC
,
Wilder, VT
, p.
996
.
You do not currently have access to this content.